Xueliu Gong, Wei Shi, Jiarong Wu, Jingsong Qin, Wang Huang, Yanfang Feng, Haijun Sun, Jufeng Zheng, Kun Cheng, Stephen Joseph, Junhui Chen, Rongjun Bian, Lianqing Li, Genxing Pan
{"title":"将生物炭转化为生物炭基尿素可促进稻麦轮作系统的环境和经济可持续性","authors":"Xueliu Gong, Wei Shi, Jiarong Wu, Jingsong Qin, Wang Huang, Yanfang Feng, Haijun Sun, Jufeng Zheng, Kun Cheng, Stephen Joseph, Junhui Chen, Rongjun Bian, Lianqing Li, Genxing Pan","doi":"10.1111/gcbb.70014","DOIUrl":null,"url":null,"abstract":"<p>Biochar amendments in rice-wheat systems are sustainable for reducing GHGs (greenhouse gases) and improving soil health but the widespread adoption of biochar faces economic challenges. To address limitation, a novel biochar-based urea was formulated for environmental and cost advantages. A pot experiment within a rice-wheat rotation was conducted to evaluate comparative effects of biochar-based urea (CKBU), biochar + urea (BCU), and biochar-based urea + biochar (BCBU) over conventional mineral fertilizer (CKU) on soil ammonia (NH<sub>3</sub>) volatilization, GHG emissions, soil structure, and crop productivity. Furthermore, fertilizer N fate was tracked using the <sup>15</sup>N isotope during wheat season. The results indicated that compared to CKU, CKBU, BCU, and BCBU treatments significantly mitigated NH<sub>3</sub> volatilization by 22%–31% during the rice season, and a 19% reduction was observed under the BCBU treatment during the wheat season due to the response of N-cycling microorganisms. Regarding GHG emissions, the CKBU, BCU, and BCBU treatments significantly decreased the global warming potential (GWP) value by 49%–55% during the rice season and by 26%–45% during the wheat season, compared to CKU. Additionally, CKBU enhanced <sup>15</sup>N use efficiency by 29% during wheat season, without affecting the rice season. The economic performance indicated that applying BU alone offered a net economic benefit, whereas biochar amendment led to a net economic loss. However, biochar amendment improved SOC and aggregation structure, with a significant increase in macroaggregate distribution over 50% compared to CKU and CKBU. Therefore, BU with small portions of biochar can be as effective in reducing NH<sub>3</sub> emissions and mitigating GHG emissions as the use of a large quantity of biochar. Additionally, the BCBU did not show additional synergistic benefits regarding emission reduction or yield enhancement. Therefore, shifting biochar to BU could be a cost-effective approach to achieving sustainable productivity in rice-wheat crop rotation systems.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70014","citationCount":"0","resultStr":"{\"title\":\"Converting Biochar Into Biochar-Based Urea Promotes Environmental and Economic Sustainability in Rice-Wheat Rotation System\",\"authors\":\"Xueliu Gong, Wei Shi, Jiarong Wu, Jingsong Qin, Wang Huang, Yanfang Feng, Haijun Sun, Jufeng Zheng, Kun Cheng, Stephen Joseph, Junhui Chen, Rongjun Bian, Lianqing Li, Genxing Pan\",\"doi\":\"10.1111/gcbb.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biochar amendments in rice-wheat systems are sustainable for reducing GHGs (greenhouse gases) and improving soil health but the widespread adoption of biochar faces economic challenges. To address limitation, a novel biochar-based urea was formulated for environmental and cost advantages. A pot experiment within a rice-wheat rotation was conducted to evaluate comparative effects of biochar-based urea (CKBU), biochar + urea (BCU), and biochar-based urea + biochar (BCBU) over conventional mineral fertilizer (CKU) on soil ammonia (NH<sub>3</sub>) volatilization, GHG emissions, soil structure, and crop productivity. Furthermore, fertilizer N fate was tracked using the <sup>15</sup>N isotope during wheat season. The results indicated that compared to CKU, CKBU, BCU, and BCBU treatments significantly mitigated NH<sub>3</sub> volatilization by 22%–31% during the rice season, and a 19% reduction was observed under the BCBU treatment during the wheat season due to the response of N-cycling microorganisms. Regarding GHG emissions, the CKBU, BCU, and BCBU treatments significantly decreased the global warming potential (GWP) value by 49%–55% during the rice season and by 26%–45% during the wheat season, compared to CKU. Additionally, CKBU enhanced <sup>15</sup>N use efficiency by 29% during wheat season, without affecting the rice season. The economic performance indicated that applying BU alone offered a net economic benefit, whereas biochar amendment led to a net economic loss. However, biochar amendment improved SOC and aggregation structure, with a significant increase in macroaggregate distribution over 50% compared to CKU and CKBU. Therefore, BU with small portions of biochar can be as effective in reducing NH<sub>3</sub> emissions and mitigating GHG emissions as the use of a large quantity of biochar. Additionally, the BCBU did not show additional synergistic benefits regarding emission reduction or yield enhancement. Therefore, shifting biochar to BU could be a cost-effective approach to achieving sustainable productivity in rice-wheat crop rotation systems.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70014\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Converting Biochar Into Biochar-Based Urea Promotes Environmental and Economic Sustainability in Rice-Wheat Rotation System
Biochar amendments in rice-wheat systems are sustainable for reducing GHGs (greenhouse gases) and improving soil health but the widespread adoption of biochar faces economic challenges. To address limitation, a novel biochar-based urea was formulated for environmental and cost advantages. A pot experiment within a rice-wheat rotation was conducted to evaluate comparative effects of biochar-based urea (CKBU), biochar + urea (BCU), and biochar-based urea + biochar (BCBU) over conventional mineral fertilizer (CKU) on soil ammonia (NH3) volatilization, GHG emissions, soil structure, and crop productivity. Furthermore, fertilizer N fate was tracked using the 15N isotope during wheat season. The results indicated that compared to CKU, CKBU, BCU, and BCBU treatments significantly mitigated NH3 volatilization by 22%–31% during the rice season, and a 19% reduction was observed under the BCBU treatment during the wheat season due to the response of N-cycling microorganisms. Regarding GHG emissions, the CKBU, BCU, and BCBU treatments significantly decreased the global warming potential (GWP) value by 49%–55% during the rice season and by 26%–45% during the wheat season, compared to CKU. Additionally, CKBU enhanced 15N use efficiency by 29% during wheat season, without affecting the rice season. The economic performance indicated that applying BU alone offered a net economic benefit, whereas biochar amendment led to a net economic loss. However, biochar amendment improved SOC and aggregation structure, with a significant increase in macroaggregate distribution over 50% compared to CKU and CKBU. Therefore, BU with small portions of biochar can be as effective in reducing NH3 emissions and mitigating GHG emissions as the use of a large quantity of biochar. Additionally, the BCBU did not show additional synergistic benefits regarding emission reduction or yield enhancement. Therefore, shifting biochar to BU could be a cost-effective approach to achieving sustainable productivity in rice-wheat crop rotation systems.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.