IF 1 2区 数学 Q1 MATHEMATICS
I. Del Corso, L. Stefanello
{"title":"On Fuchs' problem for finitely generated abelian groups: The small torsion case","authors":"I. Del Corso,&nbsp;L. Stefanello","doi":"10.1112/jlms.70055","DOIUrl":null,"url":null,"abstract":"<p>A classical problem, raised by Fuchs in 1960, asks to classify the abelian groups which are groups of units of some rings. In this paper, we consider the case of finitely generated abelian groups, solving Fuchs' problem for such groups with the additional assumption that the torsion subgroups are <i>small</i>, for a suitable notion of small related to the Prüfer rank. As a concrete instance, we classify for each <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\geqslant 2$</annotation>\n </semantics></math> the realisable groups of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>/</mo>\n <mi>n</mi>\n <mi>Z</mi>\n <mo>×</mo>\n <msup>\n <mi>Z</mi>\n <mi>r</mi>\n </msup>\n </mrow>\n <annotation>$\\mathbb {Z}/n\\mathbb {Z}\\times \\mathbb {Z}^r$</annotation>\n </semantics></math>. Our tools require an investigation of the adjoint group of suitable radical rings of odd prime power order appearing in the picture, giving conditions under which the additive and adjoint groups are isomorphic. In the last section, we also deal with some groups of order a power of 2, proving that the groups of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mo>/</mo>\n <mn>4</mn>\n <mi>Z</mi>\n <mo>×</mo>\n <mi>Z</mi>\n <mo>/</mo>\n <msup>\n <mn>2</mn>\n <mi>u</mi>\n </msup>\n <mi>Z</mi>\n </mrow>\n <annotation>$\\mathbb {Z}/4\\mathbb {Z}\\times \\mathbb {Z}/2^{u}\\mathbb {Z}$</annotation>\n </semantics></math> are realisable if and only if <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>⩽</mo>\n <mi>u</mi>\n <mo>⩽</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$0\\leqslant u\\leqslant 3$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mi>u</mi>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2^u+1$</annotation>\n </semantics></math> is a Fermat prime.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70055","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70055","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

福克斯在 1960 年提出了一个经典问题,要求对作为某些环的单位群的无常群进行分类。在本文中,我们考虑了有限生成的无边群的情况,在解决福克斯的问题时,附加了一个假设,即对于与普吕弗秩相关的合适的小概念,扭转子群是小的。作为一个具体的例子,我们对每个 n ⩾ 2 $n\geqslant 2$ 形式为 Z / n Z × Z r $\mathbb {Z}/n\mathbb {Z}\times \mathbb {Z}^r$ 的可实现群进行了分类。我们的工具要求研究图中出现的奇素数幂阶的合适基环的邻接群,给出加群和邻接群同构的条件。在最后一节中,我们还将讨论一些阶为 2 的幂的群、证明当且仅当 0 ⩽ u ⩽ 3 $0\leqslant u\leqslant 3$ 或 2 u + 1 $2^u+1$ 是费马素数时,形式为 Z / 4 Z × Z / 2 u Z $\mathbb {Z}/4\mathbb {Z}/times \mathbb {Z}/2^{u}\mathbb {Z}$ 的群是可实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Fuchs' problem for finitely generated abelian groups: The small torsion case

On Fuchs' problem for finitely generated abelian groups: The small torsion case

A classical problem, raised by Fuchs in 1960, asks to classify the abelian groups which are groups of units of some rings. In this paper, we consider the case of finitely generated abelian groups, solving Fuchs' problem for such groups with the additional assumption that the torsion subgroups are small, for a suitable notion of small related to the Prüfer rank. As a concrete instance, we classify for each n 2 $n\geqslant 2$ the realisable groups of the form Z / n Z × Z r $\mathbb {Z}/n\mathbb {Z}\times \mathbb {Z}^r$ . Our tools require an investigation of the adjoint group of suitable radical rings of odd prime power order appearing in the picture, giving conditions under which the additive and adjoint groups are isomorphic. In the last section, we also deal with some groups of order a power of 2, proving that the groups of the form Z / 4 Z × Z / 2 u Z $\mathbb {Z}/4\mathbb {Z}\times \mathbb {Z}/2^{u}\mathbb {Z}$ are realisable if and only if 0 u 3 $0\leqslant u\leqslant 3$ or 2 u + 1 $2^u+1$ is a Fermat prime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信