Guodong Liu, Xinxin He, Xiaoya Liu, Donghui Ma, Jun Tang, Zongmin Ma, Yanjun Li, Jun Liu
{"title":"抗松弛材料OTS涂层解吸机理及热稳定性研究","authors":"Guodong Liu, Xinxin He, Xiaoya Liu, Donghui Ma, Jun Tang, Zongmin Ma, Yanjun Li, Jun Liu","doi":"10.1049/mna2.70006","DOIUrl":null,"url":null,"abstract":"<p>This research explores the desorption mechanism and thermal stability of octadecyltrichlorosilane (OTS, CH<sub>3</sub>(CH<sub>2</sub>)<sub>17</sub>SiCl<sub>3</sub>) coating on quartz slides and in alkali-metal vapour cells. The morphological thermal-changes, energy dissipation diversity, and anti-relaxation characteristic of OTS coatings before and after exposure to Cs atoms by Fourier transform infrared spectroscopy, water contact angle measurement, atomic force microscopy imaging, collision energy dissipation analysis, and free induction decay of Cs atoms are measured systematically. The results show that the OTS coatings exhibit the best thermal stability under the specific process conditions, and the homogeneous and dense structure makes the adsorption of alkali-metal atoms more stable, which effectively reduces surface energy dissipation and prolongs the relaxation time of Cs atoms. The study provides certain reference for efficient anti-relaxation coating fabrication and coated cell application.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"20 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.70006","citationCount":"0","resultStr":"{\"title\":\"Study on desorption mechanism and thermal stability of OTS coating as an anti-relaxation material\",\"authors\":\"Guodong Liu, Xinxin He, Xiaoya Liu, Donghui Ma, Jun Tang, Zongmin Ma, Yanjun Li, Jun Liu\",\"doi\":\"10.1049/mna2.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research explores the desorption mechanism and thermal stability of octadecyltrichlorosilane (OTS, CH<sub>3</sub>(CH<sub>2</sub>)<sub>17</sub>SiCl<sub>3</sub>) coating on quartz slides and in alkali-metal vapour cells. The morphological thermal-changes, energy dissipation diversity, and anti-relaxation characteristic of OTS coatings before and after exposure to Cs atoms by Fourier transform infrared spectroscopy, water contact angle measurement, atomic force microscopy imaging, collision energy dissipation analysis, and free induction decay of Cs atoms are measured systematically. The results show that the OTS coatings exhibit the best thermal stability under the specific process conditions, and the homogeneous and dense structure makes the adsorption of alkali-metal atoms more stable, which effectively reduces surface energy dissipation and prolongs the relaxation time of Cs atoms. The study provides certain reference for efficient anti-relaxation coating fabrication and coated cell application.</p>\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.70006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mna2.70006\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mna2.70006","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on desorption mechanism and thermal stability of OTS coating as an anti-relaxation material
This research explores the desorption mechanism and thermal stability of octadecyltrichlorosilane (OTS, CH3(CH2)17SiCl3) coating on quartz slides and in alkali-metal vapour cells. The morphological thermal-changes, energy dissipation diversity, and anti-relaxation characteristic of OTS coatings before and after exposure to Cs atoms by Fourier transform infrared spectroscopy, water contact angle measurement, atomic force microscopy imaging, collision energy dissipation analysis, and free induction decay of Cs atoms are measured systematically. The results show that the OTS coatings exhibit the best thermal stability under the specific process conditions, and the homogeneous and dense structure makes the adsorption of alkali-metal atoms more stable, which effectively reduces surface energy dissipation and prolongs the relaxation time of Cs atoms. The study provides certain reference for efficient anti-relaxation coating fabrication and coated cell application.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics