IF 1 2区 数学 Q1 MATHEMATICS
Yvain Bruned, Kurusch Ebrahimi-Fard, Yingtong Hou
{"title":"Multi-indice \n \n B\n $B$\n -series","authors":"Yvain Bruned,&nbsp;Kurusch Ebrahimi-Fard,&nbsp;Yingtong Hou","doi":"10.1112/jlms.70049","DOIUrl":null,"url":null,"abstract":"<p>We propose a novel way to study numerical methods for ordinary differential equations in one dimension via the notion of multi-indice. The main idea is to replace rooted trees in Butcher's <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>-series by multi-indices. The latter were introduced recently in the context of describing solutions of singular stochastic partial differential equations. The combinatorial shift away from rooted trees allows for a compressed description of numerical schemes. Furthermore, such multi-indices <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>-series uniquely characterize the Taylor expansion of 1-dimensional local and affine equivariant maps.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70049","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种通过多指数概念研究一维常微分方程数值方法的新方法。其主要思想是用多指数取代布彻 B $B$ 系列中的有根树。后者是最近在描述奇异随机偏微分方程解时引入的。从根树上进行组合转换,可以压缩数值方案的描述。此外,这种多指数 B $B$ 序列唯一地描述了一维局部和仿射等变映射的泰勒展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-indice B $B$ -series

We propose a novel way to study numerical methods for ordinary differential equations in one dimension via the notion of multi-indice. The main idea is to replace rooted trees in Butcher's B $B$ -series by multi-indices. The latter were introduced recently in the context of describing solutions of singular stochastic partial differential equations. The combinatorial shift away from rooted trees allows for a compressed description of numerical schemes. Furthermore, such multi-indices B $B$ -series uniquely characterize the Taylor expansion of 1-dimensional local and affine equivariant maps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信