基于Fokas方法的变系数演化问题第一部分:耗散情况

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Bernard Deconinck, Matthew Farkas
{"title":"基于Fokas方法的变系数演化问题第一部分:耗散情况","authors":"Bernard Deconinck,&nbsp;Matthew Farkas","doi":"10.1111/sapm.12800","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We derive explicit solution representations for linear, dissipative, second-order initial-boundary value problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the unified transform method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non–self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable-Coefficient Evolution Problems via the Fokas Method Part I: Dissipative Case\",\"authors\":\"Bernard Deconinck,&nbsp;Matthew Farkas\",\"doi\":\"10.1111/sapm.12800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We derive explicit solution representations for linear, dissipative, second-order initial-boundary value problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the unified transform method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non–self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12800\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12800","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们导出了具有空间变化系数的线性、耗散、二阶初始边值问题(IBVPs)的显式解表示,该问题具有线性、常系数、两点边界条件。我们通过考虑变系数问题作为常系数界面问题的极限来实现这一点,而常系数界面问题以前是用Fokas的统一变换方法解决的。我们的方法产生解的显式表示,允许我们直接确定解的性质。作为明确的例子,我们展示了不同的IBVPs变化的热方程和线性化的复金兹堡-朗道(CGL)方程(周期边界条件)的求解过程。我们可以用它来找到耗散二阶线性算子(包括非自伴随算子)作为超越函数的根的特征值,并且我们可以用特征值来显式地写出它们的特征函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable-Coefficient Evolution Problems via the Fokas Method Part I: Dissipative Case

We derive explicit solution representations for linear, dissipative, second-order initial-boundary value problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the unified transform method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non–self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信