Nina Grella, Karen Pedersen, Nico Blüthgen, Annika Busse, David A. Donoso, Ana Falconí-López, Christian Fiderer, Marco Heurich, Maria de la Hoz, Peter Kriegel, Felicity L. Newell, Marcel Püls, Dominik Rabl, H. Martin Schäfer, Sebastian Seibold, Constance J. Tremlett, Heike Feldhaar, Jörg Müller
{"title":"低地热带森林恢复梯度上的脊椎动物多样性和生物量","authors":"Nina Grella, Karen Pedersen, Nico Blüthgen, Annika Busse, David A. Donoso, Ana Falconí-López, Christian Fiderer, Marco Heurich, Maria de la Hoz, Peter Kriegel, Felicity L. Newell, Marcel Püls, Dominik Rabl, H. Martin Schäfer, Sebastian Seibold, Constance J. Tremlett, Heike Feldhaar, Jörg Müller","doi":"10.1111/btp.13417","DOIUrl":null,"url":null,"abstract":"<p>Deforestation of tropical forests have resulted in extensive areas of secondary forests with the potential to restore biodiversity to former old-growth forest levels. The recovery of vertebrate communities is an essential component of biodiversity and ecosystem restoration, as vertebrates provide key ecosystem functions. However, little is known about the recovery trajectories and habitat preferences of vertebrates in tropical landscapes with differing land-use legacies. We used camera traps covering 3 weeks to study the activity of ground-based mammals and birds in the understory of 57 sites along a forest recovery gradient, ranging from active agriculture, such as pastures and cacao plantations, to naturally recovering forests and old-growth forests in the Chocó rainforest in north-western Ecuador. Our results show that diversity and biomass of wild vertebrates are highest in old-growth forests and late recovery stages, while for domestic vertebrates, these indices are highest in agricultural land. Additionally, while species-habitat networks showed low habitat specificity for vertebrate species, an indicator species analysis found no species to indicate old-growth forests, <i>Dasyprocta punctata</i> and <i>Tayassu pecari</i> to indicate all forest types, and <i>Aramides wolfi</i> and <i>Pecari tajacu</i> to indicate late regeneration forests. We suggest that these patterns are caused by a high habitat connectivity and large amounts of remaining old-growth forest in our study area. Our findings indicate that secondary forests have a high potential for the recovery of vertebrate species diversity and biomass to old-growth level in lowland tropical forests with short regeneration times.</p><p>Abstract in Spanish is available with online material.</p>","PeriodicalId":8982,"journal":{"name":"Biotropica","volume":"57 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/btp.13417","citationCount":"0","resultStr":"{\"title\":\"Vertebrate diversity and biomass along a recovery gradient in a lowland tropical forest\",\"authors\":\"Nina Grella, Karen Pedersen, Nico Blüthgen, Annika Busse, David A. Donoso, Ana Falconí-López, Christian Fiderer, Marco Heurich, Maria de la Hoz, Peter Kriegel, Felicity L. Newell, Marcel Püls, Dominik Rabl, H. Martin Schäfer, Sebastian Seibold, Constance J. Tremlett, Heike Feldhaar, Jörg Müller\",\"doi\":\"10.1111/btp.13417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deforestation of tropical forests have resulted in extensive areas of secondary forests with the potential to restore biodiversity to former old-growth forest levels. The recovery of vertebrate communities is an essential component of biodiversity and ecosystem restoration, as vertebrates provide key ecosystem functions. However, little is known about the recovery trajectories and habitat preferences of vertebrates in tropical landscapes with differing land-use legacies. We used camera traps covering 3 weeks to study the activity of ground-based mammals and birds in the understory of 57 sites along a forest recovery gradient, ranging from active agriculture, such as pastures and cacao plantations, to naturally recovering forests and old-growth forests in the Chocó rainforest in north-western Ecuador. Our results show that diversity and biomass of wild vertebrates are highest in old-growth forests and late recovery stages, while for domestic vertebrates, these indices are highest in agricultural land. Additionally, while species-habitat networks showed low habitat specificity for vertebrate species, an indicator species analysis found no species to indicate old-growth forests, <i>Dasyprocta punctata</i> and <i>Tayassu pecari</i> to indicate all forest types, and <i>Aramides wolfi</i> and <i>Pecari tajacu</i> to indicate late regeneration forests. We suggest that these patterns are caused by a high habitat connectivity and large amounts of remaining old-growth forest in our study area. Our findings indicate that secondary forests have a high potential for the recovery of vertebrate species diversity and biomass to old-growth level in lowland tropical forests with short regeneration times.</p><p>Abstract in Spanish is available with online material.</p>\",\"PeriodicalId\":8982,\"journal\":{\"name\":\"Biotropica\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/btp.13417\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotropica\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/btp.13417\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotropica","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/btp.13417","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Vertebrate diversity and biomass along a recovery gradient in a lowland tropical forest
Deforestation of tropical forests have resulted in extensive areas of secondary forests with the potential to restore biodiversity to former old-growth forest levels. The recovery of vertebrate communities is an essential component of biodiversity and ecosystem restoration, as vertebrates provide key ecosystem functions. However, little is known about the recovery trajectories and habitat preferences of vertebrates in tropical landscapes with differing land-use legacies. We used camera traps covering 3 weeks to study the activity of ground-based mammals and birds in the understory of 57 sites along a forest recovery gradient, ranging from active agriculture, such as pastures and cacao plantations, to naturally recovering forests and old-growth forests in the Chocó rainforest in north-western Ecuador. Our results show that diversity and biomass of wild vertebrates are highest in old-growth forests and late recovery stages, while for domestic vertebrates, these indices are highest in agricultural land. Additionally, while species-habitat networks showed low habitat specificity for vertebrate species, an indicator species analysis found no species to indicate old-growth forests, Dasyprocta punctata and Tayassu pecari to indicate all forest types, and Aramides wolfi and Pecari tajacu to indicate late regeneration forests. We suggest that these patterns are caused by a high habitat connectivity and large amounts of remaining old-growth forest in our study area. Our findings indicate that secondary forests have a high potential for the recovery of vertebrate species diversity and biomass to old-growth level in lowland tropical forests with short regeneration times.
Abstract in Spanish is available with online material.
期刊介绍:
Ranked by the ISI index, Biotropica is a highly regarded source of original research on the ecology, conservation and management of all tropical ecosystems, and on the evolution, behavior, and population biology of tropical organisms. Published on behalf of the Association of Tropical Biology and Conservation, the journal''s Special Issues and Special Sections quickly become indispensable references for researchers in the field. Biotropica publishes timely Papers, Reviews, Commentaries, and Insights. Commentaries generate thought-provoking ideas that frequently initiate fruitful debate and discussion, while Reviews provide authoritative and analytical overviews of topics of current conservation or ecological importance. The newly instituted category Insights replaces Short Communications.