Turán雏菊和超立方体的密度

IF 0.8 3区 数学 Q2 MATHEMATICS
David Ellis, Maria-Romina Ivan, Imre Leader
{"title":"Turán雏菊和超立方体的密度","authors":"David Ellis,&nbsp;Maria-Romina Ivan,&nbsp;Imre Leader","doi":"10.1112/blms.13171","DOIUrl":null,"url":null,"abstract":"<p>An <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-daisy is an <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-uniform hypergraph consisting of the six <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-sets formed by taking the union of an <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>r</mi>\n <mo>−</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(r-2)$</annotation>\n </semantics></math>-set with each of the 2-sets of a disjoint 4-set. Bollobás, Leader and Malvenuto, and also Bukh, conjectured that the Turán density of the <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-daisy tends to zero as <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$r \\rightarrow \\infty$</annotation>\n </semantics></math>. In this paper we disprove this conjecture. Adapting our construction, we are also able to disprove a folklore conjecture about Turán densities of hypercubes. For fixed <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> and large <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, we show that the smallest set of vertices of the <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional hypercube <span></span><math>\n <semantics>\n <msub>\n <mi>Q</mi>\n <mi>n</mi>\n </msub>\n <annotation>$Q_n$</annotation>\n </semantics></math> that intersects every copy of <span></span><math>\n <semantics>\n <msub>\n <mi>Q</mi>\n <mi>d</mi>\n </msub>\n <annotation>$Q_d$</annotation>\n </semantics></math> has asymptotic density strictly below <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mo>(</mo>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$1/(d+1)$</annotation>\n </semantics></math>, for all <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>8</mn>\n </mrow>\n <annotation>$d \\geqslant 8$</annotation>\n </semantics></math>. In fact, we show that this asymptotic density is at most <span></span><math>\n <semantics>\n <msup>\n <mi>c</mi>\n <mi>d</mi>\n </msup>\n <annotation>$c^d$</annotation>\n </semantics></math>, for some constant <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$c&lt;1$</annotation>\n </semantics></math>. As a consequence, we obtain similar bounds for the edge-Turán densities of hypercubes. We also answer some related questions of Johnson and Talbot, and disprove a conjecture made by Bukh and by Griggs and Lu on poset densities.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3838-3853"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13171","citationCount":"0","resultStr":"{\"title\":\"Turán densities for daisies and hypercubes\",\"authors\":\"David Ellis,&nbsp;Maria-Romina Ivan,&nbsp;Imre Leader\",\"doi\":\"10.1112/blms.13171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-daisy is an <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-uniform hypergraph consisting of the six <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-sets formed by taking the union of an <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>r</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(r-2)$</annotation>\\n </semantics></math>-set with each of the 2-sets of a disjoint 4-set. Bollobás, Leader and Malvenuto, and also Bukh, conjectured that the Turán density of the <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-daisy tends to zero as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$r \\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>. In this paper we disprove this conjecture. Adapting our construction, we are also able to disprove a folklore conjecture about Turán densities of hypercubes. For fixed <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math> and large <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>, we show that the smallest set of vertices of the <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional hypercube <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Q</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$Q_n$</annotation>\\n </semantics></math> that intersects every copy of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Q</mi>\\n <mi>d</mi>\\n </msub>\\n <annotation>$Q_d$</annotation>\\n </semantics></math> has asymptotic density strictly below <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$1/(d+1)$</annotation>\\n </semantics></math>, for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation>$d \\\\geqslant 8$</annotation>\\n </semantics></math>. In fact, we show that this asymptotic density is at most <span></span><math>\\n <semantics>\\n <msup>\\n <mi>c</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$c^d$</annotation>\\n </semantics></math>, for some constant <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n <mo>&lt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$c&lt;1$</annotation>\\n </semantics></math>. As a consequence, we obtain similar bounds for the edge-Turán densities of hypercubes. We also answer some related questions of Johnson and Talbot, and disprove a conjecture made by Bukh and by Griggs and Lu on poset densities.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3838-3853\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13171\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13171\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13171","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个r $r$ -daisy是一个r $r$ -一致超图,它由六个r $r$ -集合组成,这些集合是由一个(r−2)的并集构成的。$(r-2)$ -与不相交的4集的每一个2集的集合。Bollobás, Leader和Malvenuto,以及Bukh推测,当r→∞$r \rightarrow \infty$时,r $r$ -daisy的Turán密度趋于零。在本文中,我们反驳了这个猜想。调整我们的结构,我们也能够反驳关于Turán超立方体密度的民间猜想。对于固定d $d$和较大n $n$,我们证明了n $n$维超立方体Q n $Q_n$与Q d $Q_d$的每个副本相交的最小顶点集具有渐近密度严格低于1 / (d + 1) $1/(d+1)$,对于所有d大于或等于8 $d \geqslant 8$。事实上,我们证明了这个渐近密度不超过c d $c^d$,对于某个常数c &lt;1 $c<1$。因此,我们得到了超立方体edge-Turán密度的类似界。我们还回答了Johnson和Talbot的一些相关问题,并反驳了Bukh、Griggs和Lu关于偏集密度的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turán densities for daisies and hypercubes

An r $r$ -daisy is an r $r$ -uniform hypergraph consisting of the six r $r$ -sets formed by taking the union of an ( r 2 ) $(r-2)$ -set with each of the 2-sets of a disjoint 4-set. Bollobás, Leader and Malvenuto, and also Bukh, conjectured that the Turán density of the r $r$ -daisy tends to zero as r $r \rightarrow \infty$ . In this paper we disprove this conjecture. Adapting our construction, we are also able to disprove a folklore conjecture about Turán densities of hypercubes. For fixed d $d$ and large n $n$ , we show that the smallest set of vertices of the n $n$ -dimensional hypercube Q n $Q_n$ that intersects every copy of Q d $Q_d$ has asymptotic density strictly below 1 / ( d + 1 ) $1/(d+1)$ , for all d 8 $d \geqslant 8$ . In fact, we show that this asymptotic density is at most c d $c^d$ , for some constant c < 1 $c<1$ . As a consequence, we obtain similar bounds for the edge-Turán densities of hypercubes. We also answer some related questions of Johnson and Talbot, and disprove a conjecture made by Bukh and by Griggs and Lu on poset densities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信