Soundarya Lahari Pappu, Varaprasad Janamala, A. S. Veerendra
{"title":"径向配电系统中光伏、DSTATCOM 和 EVCS 优化配置的猎人-猎物优化算法","authors":"Soundarya Lahari Pappu, Varaprasad Janamala, A. S. Veerendra","doi":"10.1002/adc2.231","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This research article instigates a seminal approach for optimizing reactive power in renewable energy sources (RES) and electric vehicles (EVs) coalescing distribution systems, using the innovative Hunter–Prey Optimization (HPO) algorithm in conjunction with DSTATCOM as a reactive power compensator. The proposed methodology aims to minimize losses, enhance voltage stability, and improve overall system performance by simultaneously optimizing reactive power flows in photovoltaic RES (PV_DG), EV charging stations (EVCS), and DSTATCOMs within the distribution system. Simulations carried on IEEE-33, IEEE-69, and IEEE-118 test bus systems in MATLAB environment demonstrate that the HPO-based approach achieves a 91.47% and 96.61% reduction in real power losses and an improvement in voltage profile with a minimum voltage value of 0.991 and 0.994 p.u. (respectively for IEEE-33 and 69 bus systems), compared to traditional algorithms. These results highlight the lofty performance of the HPO method, effectively addressing the challenges posed by the integration of RES and EVs along with DSTATCOM.</p>\n </div>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.231","citationCount":"0","resultStr":"{\"title\":\"Hunter–Prey Optimization Algorithm for Optimal Allocation of PV, DSTATCOM, and EVCS in Radial Distribution Systems\",\"authors\":\"Soundarya Lahari Pappu, Varaprasad Janamala, A. S. Veerendra\",\"doi\":\"10.1002/adc2.231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This research article instigates a seminal approach for optimizing reactive power in renewable energy sources (RES) and electric vehicles (EVs) coalescing distribution systems, using the innovative Hunter–Prey Optimization (HPO) algorithm in conjunction with DSTATCOM as a reactive power compensator. The proposed methodology aims to minimize losses, enhance voltage stability, and improve overall system performance by simultaneously optimizing reactive power flows in photovoltaic RES (PV_DG), EV charging stations (EVCS), and DSTATCOMs within the distribution system. Simulations carried on IEEE-33, IEEE-69, and IEEE-118 test bus systems in MATLAB environment demonstrate that the HPO-based approach achieves a 91.47% and 96.61% reduction in real power losses and an improvement in voltage profile with a minimum voltage value of 0.991 and 0.994 p.u. (respectively for IEEE-33 and 69 bus systems), compared to traditional algorithms. These results highlight the lofty performance of the HPO method, effectively addressing the challenges posed by the integration of RES and EVs along with DSTATCOM.</p>\\n </div>\",\"PeriodicalId\":100030,\"journal\":{\"name\":\"Advanced Control for Applications\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.231\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Control for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adc2.231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hunter–Prey Optimization Algorithm for Optimal Allocation of PV, DSTATCOM, and EVCS in Radial Distribution Systems
This research article instigates a seminal approach for optimizing reactive power in renewable energy sources (RES) and electric vehicles (EVs) coalescing distribution systems, using the innovative Hunter–Prey Optimization (HPO) algorithm in conjunction with DSTATCOM as a reactive power compensator. The proposed methodology aims to minimize losses, enhance voltage stability, and improve overall system performance by simultaneously optimizing reactive power flows in photovoltaic RES (PV_DG), EV charging stations (EVCS), and DSTATCOMs within the distribution system. Simulations carried on IEEE-33, IEEE-69, and IEEE-118 test bus systems in MATLAB environment demonstrate that the HPO-based approach achieves a 91.47% and 96.61% reduction in real power losses and an improvement in voltage profile with a minimum voltage value of 0.991 and 0.994 p.u. (respectively for IEEE-33 and 69 bus systems), compared to traditional algorithms. These results highlight the lofty performance of the HPO method, effectively addressing the challenges posed by the integration of RES and EVs along with DSTATCOM.