{"title":"自由半群和群中 k $k$ 无积集的结构和密度","authors":"Freddie Illingworth, Lukas Michel, Alex Scott","doi":"10.1112/jlms.70046","DOIUrl":null,"url":null,"abstract":"<p>The free semigroup <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> on a finite alphabet <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is the set of all finite words with letters from <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> equipped with the operation of concatenation. A subset <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free if no element of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> can be obtained by concatenating <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> words from <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, and strongly <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free if no element of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is a (non-trivial) concatenation of at most <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> words from <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. We prove that a <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free subset of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> has upper Banach density at most <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$1/\\rho (k)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>min</mi>\n <mo>{</mo>\n <mi>ℓ</mi>\n <mo>:</mo>\n <mi>ℓ</mi>\n <mo>∤</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\rho (k) = \\min \\lbrace \\ell \\colon \\ell \\nmid k - 1 \\rbrace$</annotation>\n </semantics></math>. We also determine the structure of the extremal <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free subsets for all <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∉</mo>\n <mo>{</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>5</mn>\n <mo>,</mo>\n <mn>7</mn>\n <mo>,</mo>\n <mn>13</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$k \\notin \\lbrace 3, 5, 7, 13 \\rbrace$</annotation>\n </semantics></math>; a special case of this proves a conjecture of Leader, Letzter, Narayanan, and Walters. We further determine the structure of all strongly <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free sets with maximum density. Finally, we prove that <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free subsets of the free group have upper Banach density at most <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$1/\\rho (k)$</annotation>\n </semantics></math>, which confirms a conjecture of Ortega, Rué, and Serra.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70046","citationCount":"0","resultStr":"{\"title\":\"The structure and density of \\n \\n k\\n $k$\\n -product-free sets in the free semigroup and group\",\"authors\":\"Freddie Illingworth, Lukas Michel, Alex Scott\",\"doi\":\"10.1112/jlms.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The free semigroup <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math> on a finite alphabet <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> is the set of all finite words with letters from <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> equipped with the operation of concatenation. A subset <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-product-free if no element of <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> can be obtained by concatenating <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> words from <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>, and strongly <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-product-free if no element of <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> is a (non-trivial) concatenation of at most <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> words from <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>. We prove that a <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-product-free subset of <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$\\\\mathcal {F}$</annotation>\\n </semantics></math> has upper Banach density at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mi>ρ</mi>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$1/\\\\rho (k)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ρ</mi>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>min</mi>\\n <mo>{</mo>\\n <mi>ℓ</mi>\\n <mo>:</mo>\\n <mi>ℓ</mi>\\n <mo>∤</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\rho (k) = \\\\min \\\\lbrace \\\\ell \\\\colon \\\\ell \\\\nmid k - 1 \\\\rbrace$</annotation>\\n </semantics></math>. We also determine the structure of the extremal <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-product-free subsets for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∉</mo>\\n <mo>{</mo>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mn>5</mn>\\n <mo>,</mo>\\n <mn>7</mn>\\n <mo>,</mo>\\n <mn>13</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$k \\\\notin \\\\lbrace 3, 5, 7, 13 \\\\rbrace$</annotation>\\n </semantics></math>; a special case of this proves a conjecture of Leader, Letzter, Narayanan, and Walters. We further determine the structure of all strongly <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-product-free sets with maximum density. Finally, we prove that <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-product-free subsets of the free group have upper Banach density at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mi>ρ</mi>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$1/\\\\rho (k)$</annotation>\\n </semantics></math>, which confirms a conjecture of Ortega, Rué, and Serra.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70046\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The structure and density of
k
$k$
-product-free sets in the free semigroup and group
The free semigroup on a finite alphabet is the set of all finite words with letters from equipped with the operation of concatenation. A subset of is -product-free if no element of can be obtained by concatenating words from , and strongly -product-free if no element of is a (non-trivial) concatenation of at most words from . We prove that a -product-free subset of has upper Banach density at most , where . We also determine the structure of the extremal -product-free subsets for all ; a special case of this proves a conjecture of Leader, Letzter, Narayanan, and Walters. We further determine the structure of all strongly -product-free sets with maximum density. Finally, we prove that -product-free subsets of the free group have upper Banach density at most , which confirms a conjecture of Ortega, Rué, and Serra.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.