Robert Angarone, Anastasia Nathanson, Victor Reiner
{"title":"作为置换表示的矩阵的周环","authors":"Robert Angarone, Anastasia Nathanson, Victor Reiner","doi":"10.1112/jlms.70039","DOIUrl":null,"url":null,"abstract":"<p>Given a matroid with a symmetry group, we study the induced group action on the Chow ring of the matroid with respect to symmetric building sets. This turns out to always be a permutation action. Work of Adiprasito, Huh and Katz showed that the Chow ring satisfies Poincaré duality and the Hard Lefschetz theorem. We lift these to statements about this permutation action, and suggest further conjectures in this vein.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70039","citationCount":"0","resultStr":"{\"title\":\"Chow rings of matroids as permutation representations\",\"authors\":\"Robert Angarone, Anastasia Nathanson, Victor Reiner\",\"doi\":\"10.1112/jlms.70039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a matroid with a symmetry group, we study the induced group action on the Chow ring of the matroid with respect to symmetric building sets. This turns out to always be a permutation action. Work of Adiprasito, Huh and Katz showed that the Chow ring satisfies Poincaré duality and the Hard Lefschetz theorem. We lift these to statements about this permutation action, and suggest further conjectures in this vein.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70039\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70039\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70039","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Chow rings of matroids as permutation representations
Given a matroid with a symmetry group, we study the induced group action on the Chow ring of the matroid with respect to symmetric building sets. This turns out to always be a permutation action. Work of Adiprasito, Huh and Katz showed that the Chow ring satisfies Poincaré duality and the Hard Lefschetz theorem. We lift these to statements about this permutation action, and suggest further conjectures in this vein.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.