基于相变材料微环混合波导的高分辨率光学卷积神经网络

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuguang Zhu, Zhengyang Zhang, Weiwei Tang, Leijun Xu, Li Han, Jie Hong, Yiming Yu, Ziying Li, Qinghua Qin, Changlong Liu, Libo Zhang, Songyuan Ding, Jiale He, Guanhai Li, Xiaoshuang Chen
{"title":"基于相变材料微环混合波导的高分辨率光学卷积神经网络","authors":"Shuguang Zhu,&nbsp;Zhengyang Zhang,&nbsp;Weiwei Tang,&nbsp;Leijun Xu,&nbsp;Li Han,&nbsp;Jie Hong,&nbsp;Yiming Yu,&nbsp;Ziying Li,&nbsp;Qinghua Qin,&nbsp;Changlong Liu,&nbsp;Libo Zhang,&nbsp;Songyuan Ding,&nbsp;Jiale He,&nbsp;Guanhai Li,&nbsp;Xiaoshuang Chen","doi":"10.1002/adpr.202400108","DOIUrl":null,"url":null,"abstract":"<p>\nIn the More-than-Moore era, the explosive growth of data and information has driven the exploration of alternative non-von Neumann computational paradigms. Photonic neuromorphic computing has emerged as a promising approach, offering high speed, wide bandwidth, and massive parallelism. Herein, a high-resolution optical convolutional neural network (OCNN) is introduced using phase-change material Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST)-based microring hybrid waveguides. This on-chip optical computing platform integrates GST into photonic devices, enabling versatile programming and in-memory computing capabilities. Central to this platform is a photonic convolutional computational kernel, constructed from photonic switching cells embedded with GST on a microring resonator. This programmable photonic switch leverages the refractive index modulation during the GST phase transition to achieve up to 64 discrete levels of transmission contrast, suitable for representing matrix elements in neural network algorithms with 6-bit resolution. Using these matrix elements, an OCNN capable of performing parallelized image edge detection and digital recognition tasks with high accuracy is demonstrated. The architecture is scalable for large-scale photonic neural networks, offering ultrahigh computational throughput, a compact design, complementary metal-oxide-semiconductor-compatible fabrication, and broad bandwidth.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400108","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Optical Convolutional Neural Networks Using Phase-Change Material-Based Microring Hybrid Waveguides\",\"authors\":\"Shuguang Zhu,&nbsp;Zhengyang Zhang,&nbsp;Weiwei Tang,&nbsp;Leijun Xu,&nbsp;Li Han,&nbsp;Jie Hong,&nbsp;Yiming Yu,&nbsp;Ziying Li,&nbsp;Qinghua Qin,&nbsp;Changlong Liu,&nbsp;Libo Zhang,&nbsp;Songyuan Ding,&nbsp;Jiale He,&nbsp;Guanhai Li,&nbsp;Xiaoshuang Chen\",\"doi\":\"10.1002/adpr.202400108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nIn the More-than-Moore era, the explosive growth of data and information has driven the exploration of alternative non-von Neumann computational paradigms. Photonic neuromorphic computing has emerged as a promising approach, offering high speed, wide bandwidth, and massive parallelism. Herein, a high-resolution optical convolutional neural network (OCNN) is introduced using phase-change material Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST)-based microring hybrid waveguides. This on-chip optical computing platform integrates GST into photonic devices, enabling versatile programming and in-memory computing capabilities. Central to this platform is a photonic convolutional computational kernel, constructed from photonic switching cells embedded with GST on a microring resonator. This programmable photonic switch leverages the refractive index modulation during the GST phase transition to achieve up to 64 discrete levels of transmission contrast, suitable for representing matrix elements in neural network algorithms with 6-bit resolution. Using these matrix elements, an OCNN capable of performing parallelized image edge detection and digital recognition tasks with high accuracy is demonstrated. The architecture is scalable for large-scale photonic neural networks, offering ultrahigh computational throughput, a compact design, complementary metal-oxide-semiconductor-compatible fabrication, and broad bandwidth.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400108\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在超越摩尔时代,数据和信息的爆炸式增长推动了对非冯·诺伊曼计算范式的探索。光子神经形态计算已经成为一种很有前途的方法,提供高速、宽带宽和大规模并行性。本文采用基于相变材料Ge2Sb2Te5 (GST)的微环混合波导,提出了一种高分辨率的光学卷积神经网络(OCNN)。这个片上光学计算平台将GST集成到光子器件中,实现了通用编程和内存计算能力。该平台的核心是一个光子卷积计算内核,由嵌入GST的光子开关单元在微环谐振器上构建。这种可编程光子开关利用GST相变期间的折射率调制来实现高达64个离散级的传输对比度,适用于以6位分辨率表示神经网络算法中的矩阵元素。利用这些矩阵元素,展示了一种能够以高精度执行并行图像边缘检测和数字识别任务的OCNN。该架构可扩展到大规模光子神经网络,提供超高的计算吞吐量,紧凑的设计,互补的金属氧化物半导体兼容制造和宽带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Resolution Optical Convolutional Neural Networks Using Phase-Change Material-Based Microring Hybrid Waveguides

High-Resolution Optical Convolutional Neural Networks Using Phase-Change Material-Based Microring Hybrid Waveguides

In the More-than-Moore era, the explosive growth of data and information has driven the exploration of alternative non-von Neumann computational paradigms. Photonic neuromorphic computing has emerged as a promising approach, offering high speed, wide bandwidth, and massive parallelism. Herein, a high-resolution optical convolutional neural network (OCNN) is introduced using phase-change material Ge2Sb2Te5 (GST)-based microring hybrid waveguides. This on-chip optical computing platform integrates GST into photonic devices, enabling versatile programming and in-memory computing capabilities. Central to this platform is a photonic convolutional computational kernel, constructed from photonic switching cells embedded with GST on a microring resonator. This programmable photonic switch leverages the refractive index modulation during the GST phase transition to achieve up to 64 discrete levels of transmission contrast, suitable for representing matrix elements in neural network algorithms with 6-bit resolution. Using these matrix elements, an OCNN capable of performing parallelized image edge detection and digital recognition tasks with high accuracy is demonstrated. The architecture is scalable for large-scale photonic neural networks, offering ultrahigh computational throughput, a compact design, complementary metal-oxide-semiconductor-compatible fabrication, and broad bandwidth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信