{"title":"Exploring the Reactivity of High Valent Iron Intermediates in Water","authors":"Parkhi Sharma, Rakesh Kumar, Ayushi Awasthi, Apparao Draksharapu","doi":"10.1002/ejic.202400438","DOIUrl":null,"url":null,"abstract":"<p>The exceptional reactivity observed in non-heme iron enzymes can be attributed to their capability to access high-valent iron oxygen species in their active site. Numerous inorganic model complexes have been reported to date, providing insights into the intricate structural and spectroscopic features of many iron-containing enzymes and advancing our understanding of their enzymatic reaction pathways. While the reactivities of synthetic iron complexes have been evaluated using various oxidants, the investigation into the formation of reactive intermediates has primarily focused on acetonitrile. However, water, which serves as the medium in biological systems, has been less frequently employed in these studies. Motivated by this, we conducted a comprehensive study on the generation of key reactive species using various oxidants with a model complex, [(BnTPEN)Fe(II)(OTf)]<sup>+</sup> (<b>1</b>) (where BnTPEN=N-benzyl-N,N,N-tris(2-pyridylmethyl)-1,2-diaminoethane) in water, which yielded important findings. In water, a quantitative yield of Fe(IV)=O species was achieved with the oxidant NaIO<sub>4</sub>. Additionally, we observed an equilibrium between side-on Fe(III)−OO and Fe(III)−OOH, with the latter eventually converting to Fe(IV)=O. The insights gained from this study are likely to be relevant in the chemistry of other Fe(II) complexes with polypyridyl pentadentate ligands.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"27 34","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202400438","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Exploring the Reactivity of High Valent Iron Intermediates in Water
The exceptional reactivity observed in non-heme iron enzymes can be attributed to their capability to access high-valent iron oxygen species in their active site. Numerous inorganic model complexes have been reported to date, providing insights into the intricate structural and spectroscopic features of many iron-containing enzymes and advancing our understanding of their enzymatic reaction pathways. While the reactivities of synthetic iron complexes have been evaluated using various oxidants, the investigation into the formation of reactive intermediates has primarily focused on acetonitrile. However, water, which serves as the medium in biological systems, has been less frequently employed in these studies. Motivated by this, we conducted a comprehensive study on the generation of key reactive species using various oxidants with a model complex, [(BnTPEN)Fe(II)(OTf)]+ (1) (where BnTPEN=N-benzyl-N,N,N-tris(2-pyridylmethyl)-1,2-diaminoethane) in water, which yielded important findings. In water, a quantitative yield of Fe(IV)=O species was achieved with the oxidant NaIO4. Additionally, we observed an equilibrium between side-on Fe(III)−OO and Fe(III)−OOH, with the latter eventually converting to Fe(IV)=O. The insights gained from this study are likely to be relevant in the chemistry of other Fe(II) complexes with polypyridyl pentadentate ligands.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.