利用h2o2衍生的活性氧增强K2CO3水溶液对二氧化碳的吸收:CCU工艺的新型速率促进

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS
Eugene Shirman, Yoel Sasson
{"title":"利用h2o2衍生的活性氧增强K2CO3水溶液对二氧化碳的吸收:CCU工艺的新型速率促进","authors":"Eugene Shirman,&nbsp;Yoel Sasson","doi":"10.1002/ghg.2312","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a novel approach to promote CO<sub>2</sub> absorption by aqueous K<sub>2</sub>CO<sub>3</sub> solutions through the <i>in-situ</i> generation of reactive oxygen species (ROS) via the alkali activation of H<sub>2</sub>O<sub>2</sub>. The superoxide radical anion (O<sub>2</sub><sup>•-</sup>) is recognized as a major contributor in this process, with its presence confirmed by UV-Vis (Ultraviolet–visible) spectroscopy through the characteristic diformazan peak formed from the reaction between nitro blue tetrazolium (NBT) and superoxide. CO<sub>2</sub> absorption experiments and <sup>13</sup>C NMR (Carbon-13 nuclear magnetic resonance) characterization demonstrate the enhanced efficiency of the promoted solution in both CO<sub>2</sub> absorption and the conversion of K<sub>2</sub>CO<sub>3</sub> to KHCO<sub>3</sub>. Comparative analysis with traditional promoters reveals the superior kinetic performance of the H<sub>2</sub>O<sub>2</sub>-promoted system at room temperature. Notably, our system yields pure KHCO<sub>3</sub> without by-products, making it highly suitable for carbon capture and utilization (CCU) by enabling versatile subsequent transformation processes. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 6","pages":"1037-1048"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2312","citationCount":"0","resultStr":"{\"title\":\"Enhancing CO2 uptake by aqueous K2CO3 solutions using H2O2-derived reactive oxygen species: Novel rate promotion for CCU processes\",\"authors\":\"Eugene Shirman,&nbsp;Yoel Sasson\",\"doi\":\"10.1002/ghg.2312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study introduces a novel approach to promote CO<sub>2</sub> absorption by aqueous K<sub>2</sub>CO<sub>3</sub> solutions through the <i>in-situ</i> generation of reactive oxygen species (ROS) via the alkali activation of H<sub>2</sub>O<sub>2</sub>. The superoxide radical anion (O<sub>2</sub><sup>•-</sup>) is recognized as a major contributor in this process, with its presence confirmed by UV-Vis (Ultraviolet–visible) spectroscopy through the characteristic diformazan peak formed from the reaction between nitro blue tetrazolium (NBT) and superoxide. CO<sub>2</sub> absorption experiments and <sup>13</sup>C NMR (Carbon-13 nuclear magnetic resonance) characterization demonstrate the enhanced efficiency of the promoted solution in both CO<sub>2</sub> absorption and the conversion of K<sub>2</sub>CO<sub>3</sub> to KHCO<sub>3</sub>. Comparative analysis with traditional promoters reveals the superior kinetic performance of the H<sub>2</sub>O<sub>2</sub>-promoted system at room temperature. Notably, our system yields pure KHCO<sub>3</sub> without by-products, making it highly suitable for carbon capture and utilization (CCU) by enabling versatile subsequent transformation processes. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"14 6\",\"pages\":\"1037-1048\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ghg.2312\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2312\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2312","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种通过碱活化 H2O2 在原位生成活性氧 (ROS) 来促进 K2CO3 水溶液吸收二氧化碳的新方法。超氧自由基阴离子(O2--)被认为是这一过程的主要贡献者,紫外可见光谱通过硝基蓝四氮唑(NBT)与超氧反应形成的特征性二甲苯峰证实了它的存在。二氧化碳吸收实验和 13C NMR(碳-13 核磁共振)表征表明,促进溶液在吸收二氧化碳和将 K2CO3 转化为 KHCO3 方面的效率都有所提高。与传统促进剂的比较分析表明,H2O2 促进体系在室温下具有更优越的动力学性能。值得注意的是,我们的系统能产生纯净的 KHCO3 而不产生副产品,这使其能够进行多种后续转化过程,非常适合于碳捕集与利用 (CCU)。© 2024 化学工业协会和 John Wiley & Sons, Ltd. 保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing CO2 uptake by aqueous K2CO3 solutions using H2O2-derived reactive oxygen species: Novel rate promotion for CCU processes

Enhancing CO2 uptake by aqueous K2CO3 solutions using H2O2-derived reactive oxygen species: Novel rate promotion for CCU processes

This study introduces a novel approach to promote CO2 absorption by aqueous K2CO3 solutions through the in-situ generation of reactive oxygen species (ROS) via the alkali activation of H2O2. The superoxide radical anion (O2•-) is recognized as a major contributor in this process, with its presence confirmed by UV-Vis (Ultraviolet–visible) spectroscopy through the characteristic diformazan peak formed from the reaction between nitro blue tetrazolium (NBT) and superoxide. CO2 absorption experiments and 13C NMR (Carbon-13 nuclear magnetic resonance) characterization demonstrate the enhanced efficiency of the promoted solution in both CO2 absorption and the conversion of K2CO3 to KHCO3. Comparative analysis with traditional promoters reveals the superior kinetic performance of the H2O2-promoted system at room temperature. Notably, our system yields pure KHCO3 without by-products, making it highly suitable for carbon capture and utilization (CCU) by enabling versatile subsequent transformation processes. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信