Selina Raumel, Xiao Xiao, Sebastian Bengsch, Marc C. Wurz
{"title":"用于三维 (3D) 元件的可铣 BN-AlN 陶瓷激光直接成型技术","authors":"Selina Raumel, Xiao Xiao, Sebastian Bengsch, Marc C. Wurz","doi":"10.1002/adem.202401271","DOIUrl":null,"url":null,"abstract":"<p>This research introduces a novel process for the direct metallization of the composite ceramic BN-AlN, a millable, high-temperature resistant material, using laser direct structuring (LDS). LDS is, for example, used for molded interconnect devices (MIDs), to integrate mechanical and electronic functions into a single 3D structure. Traditionally, MIDs have relied on polymers, but increasing thermal demands in electronics are shifting focus toward ceramic substrates like BN-AlN, which offer superior thermal stability and mechanical strength. Herein, electronic infrastructures are applied onto milled BN-AlN 3D components through a parameter study on laser activation and electroless copper deposition, followed by the development of a sequential copper–nickel–gold (CuNiAu) deposition process. The laser structuring reveals small grains of elemental aluminum on the surface, which directly catalyzes metal reduction in the electroless copper deposition. The duration and temperature of the copper electroplating process are found to influence the nuclei size and layer thickness. A palladium chloride treatment, as well as additional etching steps during the CuNiAu layer deposition, shows promising results. The metallized BN-AlN substrates are characterized for adhesion, contact reliability, resistivity, and thermal stability. The findings demonstrate the process's suitability for high-temperature applications, highlighting its potential for advancing electronic system integration.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401271","citationCount":"0","resultStr":"{\"title\":\"Laser Direct Structuring of Millable BN-AlN Ceramic for Three-Dimensional (3D) Components\",\"authors\":\"Selina Raumel, Xiao Xiao, Sebastian Bengsch, Marc C. Wurz\",\"doi\":\"10.1002/adem.202401271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research introduces a novel process for the direct metallization of the composite ceramic BN-AlN, a millable, high-temperature resistant material, using laser direct structuring (LDS). LDS is, for example, used for molded interconnect devices (MIDs), to integrate mechanical and electronic functions into a single 3D structure. Traditionally, MIDs have relied on polymers, but increasing thermal demands in electronics are shifting focus toward ceramic substrates like BN-AlN, which offer superior thermal stability and mechanical strength. Herein, electronic infrastructures are applied onto milled BN-AlN 3D components through a parameter study on laser activation and electroless copper deposition, followed by the development of a sequential copper–nickel–gold (CuNiAu) deposition process. The laser structuring reveals small grains of elemental aluminum on the surface, which directly catalyzes metal reduction in the electroless copper deposition. The duration and temperature of the copper electroplating process are found to influence the nuclei size and layer thickness. A palladium chloride treatment, as well as additional etching steps during the CuNiAu layer deposition, shows promising results. The metallized BN-AlN substrates are characterized for adhesion, contact reliability, resistivity, and thermal stability. The findings demonstrate the process's suitability for high-temperature applications, highlighting its potential for advancing electronic system integration.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 23\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401271\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401271\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401271","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Laser Direct Structuring of Millable BN-AlN Ceramic for Three-Dimensional (3D) Components
This research introduces a novel process for the direct metallization of the composite ceramic BN-AlN, a millable, high-temperature resistant material, using laser direct structuring (LDS). LDS is, for example, used for molded interconnect devices (MIDs), to integrate mechanical and electronic functions into a single 3D structure. Traditionally, MIDs have relied on polymers, but increasing thermal demands in electronics are shifting focus toward ceramic substrates like BN-AlN, which offer superior thermal stability and mechanical strength. Herein, electronic infrastructures are applied onto milled BN-AlN 3D components through a parameter study on laser activation and electroless copper deposition, followed by the development of a sequential copper–nickel–gold (CuNiAu) deposition process. The laser structuring reveals small grains of elemental aluminum on the surface, which directly catalyzes metal reduction in the electroless copper deposition. The duration and temperature of the copper electroplating process are found to influence the nuclei size and layer thickness. A palladium chloride treatment, as well as additional etching steps during the CuNiAu layer deposition, shows promising results. The metallized BN-AlN substrates are characterized for adhesion, contact reliability, resistivity, and thermal stability. The findings demonstrate the process's suitability for high-temperature applications, highlighting its potential for advancing electronic system integration.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.