谱三元组的曲率和Weitzenböck公式

IF 0.8 3区 数学 Q2 MATHEMATICS
Bram Mesland, Adam Rennie
{"title":"谱三元组的曲率和Weitzenböck公式","authors":"Bram Mesland,&nbsp;Adam Rennie","doi":"10.1002/mana.202400158","DOIUrl":null,"url":null,"abstract":"<p>Using the Levi-Civita connection on the noncommutative differential 1-forms of a spectral triple <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>,</mo>\n <mi>H</mi>\n <mo>,</mo>\n <mi>D</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {B},\\mathcal {H},\\mathcal {D})$</annotation>\n </semantics></math>, we define the full Riemann curvature tensor, the Ricci curvature tensor and scalar curvature. We give a definition of Dirac spectral triples and derive a general Weitzenböck formula for them. We apply these tools to <span></span><math>\n <semantics>\n <mi>θ</mi>\n <annotation>$\\theta$</annotation>\n </semantics></math>-deformations of compact Riemannian manifolds. We show that the Riemann and Ricci tensors transform naturally under <span></span><math>\n <semantics>\n <mi>θ</mi>\n <annotation>$\\theta$</annotation>\n </semantics></math>-deformation, whereas the connection Laplacian, Clifford representation of the curvature, and the scalar curvature are all invariant under deformation.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4582-4604"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400158","citationCount":"0","resultStr":"{\"title\":\"Curvature and Weitzenböck formula for spectral triples\",\"authors\":\"Bram Mesland,&nbsp;Adam Rennie\",\"doi\":\"10.1002/mana.202400158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using the Levi-Civita connection on the noncommutative differential 1-forms of a spectral triple <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>B</mi>\\n <mo>,</mo>\\n <mi>H</mi>\\n <mo>,</mo>\\n <mi>D</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\mathcal {B},\\\\mathcal {H},\\\\mathcal {D})$</annotation>\\n </semantics></math>, we define the full Riemann curvature tensor, the Ricci curvature tensor and scalar curvature. We give a definition of Dirac spectral triples and derive a general Weitzenböck formula for them. We apply these tools to <span></span><math>\\n <semantics>\\n <mi>θ</mi>\\n <annotation>$\\\\theta$</annotation>\\n </semantics></math>-deformations of compact Riemannian manifolds. We show that the Riemann and Ricci tensors transform naturally under <span></span><math>\\n <semantics>\\n <mi>θ</mi>\\n <annotation>$\\\\theta$</annotation>\\n </semantics></math>-deformation, whereas the connection Laplacian, Clifford representation of the curvature, and the scalar curvature are all invariant under deformation.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 12\",\"pages\":\"4582-4604\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400158\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400158\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400158","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用谱三元组(B, H, D)$ (\mathcal {B},\mathcal {H},\mathcal {D})$的非交换微分1-形式上的Levi-Civita连接,定义了满黎曼曲率张量、里奇曲率张量和标量曲率。给出狄拉克谱三元组的定义,并推导出其一般Weitzenböck公式。我们将这些工具应用于紧黎曼流形的θ $\ θ $ -变形。我们证明了黎曼张量和里奇张量在θ $\ θ $ -变形下自然变换,而曲率的连接拉普拉斯、Clifford表示和标量曲率在变形下都是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Curvature and Weitzenböck formula for spectral triples

Curvature and Weitzenböck formula for spectral triples

Using the Levi-Civita connection on the noncommutative differential 1-forms of a spectral triple ( B , H , D ) $(\mathcal {B},\mathcal {H},\mathcal {D})$ , we define the full Riemann curvature tensor, the Ricci curvature tensor and scalar curvature. We give a definition of Dirac spectral triples and derive a general Weitzenböck formula for them. We apply these tools to θ $\theta$ -deformations of compact Riemannian manifolds. We show that the Riemann and Ricci tensors transform naturally under θ $\theta$ -deformation, whereas the connection Laplacian, Clifford representation of the curvature, and the scalar curvature are all invariant under deformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信