估计金星上的阿尔夫萨芬波可能引起的离子加热

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
G. Stenberg Wieser, M. André, H. Nilsson, N. Edberg, M. Persson, S. Rojas Mata, M. Mihalikova, H. Gunell, A. Bader, Y. Futaana
{"title":"估计金星上的阿尔夫萨芬波可能引起的离子加热","authors":"G. Stenberg Wieser,&nbsp;M. André,&nbsp;H. Nilsson,&nbsp;N. Edberg,&nbsp;M. Persson,&nbsp;S. Rojas Mata,&nbsp;M. Mihalikova,&nbsp;H. Gunell,&nbsp;A. Bader,&nbsp;Y. Futaana","doi":"10.1029/2024JA032865","DOIUrl":null,"url":null,"abstract":"<p>In the Earth's magnetosphere wave-particle interaction is a major ion energization process, playing an important role for the atmospheric escape. A common type of ion heating is associated with low-frequency broadband electric wave fields. For such waves the energy is not concentrated to a certain narrow frequency range and exhibits no peaks or dips in a power spectrum. If there are enough fluctuations close to the ion gyrofrequency the electric field may still come in resonance with gyrating ions and heat them perpendicular to the background magnetic field. We perform a proof-of-concept study to investigate if this heating mechanism may contibute significantly to the energization of planetary ions also in the induced magnetosphere of Venus. We assume Alfvénic fluctuations and estimate the electric field spectral density based on magnetic field observations. We find typical estimated electric spectral densities of a few <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mtext>mV/m</mtext>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${(\\text{mV/m})}^{2}$</annotation>\n </semantics></math>/Hz close to Venus. This corresponds to a heating rate of a few eV/s. We consider an available interaction time of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math> 300 s and conclude that this mechanism could increase the energy of an oxygen ion by about a keV. Observed thermal energies are in the range 100–1,000 eV and thus, resonant wave heating may also be important at Venus.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032865","citationCount":"0","resultStr":"{\"title\":\"Estimating the Possible Ion Heating Caused by Alfvén Waves at Venus\",\"authors\":\"G. Stenberg Wieser,&nbsp;M. André,&nbsp;H. Nilsson,&nbsp;N. Edberg,&nbsp;M. Persson,&nbsp;S. Rojas Mata,&nbsp;M. Mihalikova,&nbsp;H. Gunell,&nbsp;A. Bader,&nbsp;Y. Futaana\",\"doi\":\"10.1029/2024JA032865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the Earth's magnetosphere wave-particle interaction is a major ion energization process, playing an important role for the atmospheric escape. A common type of ion heating is associated with low-frequency broadband electric wave fields. For such waves the energy is not concentrated to a certain narrow frequency range and exhibits no peaks or dips in a power spectrum. If there are enough fluctuations close to the ion gyrofrequency the electric field may still come in resonance with gyrating ions and heat them perpendicular to the background magnetic field. We perform a proof-of-concept study to investigate if this heating mechanism may contibute significantly to the energization of planetary ions also in the induced magnetosphere of Venus. We assume Alfvénic fluctuations and estimate the electric field spectral density based on magnetic field observations. We find typical estimated electric spectral densities of a few <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mtext>mV/m</mtext>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation> ${(\\\\text{mV/m})}^{2}$</annotation>\\n </semantics></math>/Hz close to Venus. This corresponds to a heating rate of a few eV/s. We consider an available interaction time of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math> 300 s and conclude that this mechanism could increase the energy of an oxygen ion by about a keV. Observed thermal energies are in the range 100–1,000 eV and thus, resonant wave heating may also be important at Venus.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032865\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032865\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032865","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在地球磁层中,波粒相互作用是离子的主要赋能过程,对大气逃逸起着重要作用。一种常见的离子加热与低频宽带电场有关。对于这种波,能量不集中在某一狭窄的频率范围内,在功率谱中没有峰或低谷。如果在离子回旋频率附近有足够的波动,电场仍可能与旋转离子发生共振,并使它们垂直于背景磁场加热。我们进行了一项概念验证研究,以调查这种加热机制是否可能对金星诱导磁层中行星离子的通电有重大贡献。我们假设alfvvac波动,并根据磁场观测估计电场谱密度。我们发现在金星附近,典型的估计电谱密度为几(mV/m) 2 ${(\text{mV/m})}^{2}$ /Hz。这相当于加热速率为几eV/s。我们认为有效的相互作用时间为300秒,并得出结论,这种机制可以使氧离子的能量增加约1 keV。观测到的热能在100-1,000 eV范围内,因此,共振波加热在金星上也可能很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating the Possible Ion Heating Caused by Alfvén Waves at Venus

Estimating the Possible Ion Heating Caused by Alfvén Waves at Venus

In the Earth's magnetosphere wave-particle interaction is a major ion energization process, playing an important role for the atmospheric escape. A common type of ion heating is associated with low-frequency broadband electric wave fields. For such waves the energy is not concentrated to a certain narrow frequency range and exhibits no peaks or dips in a power spectrum. If there are enough fluctuations close to the ion gyrofrequency the electric field may still come in resonance with gyrating ions and heat them perpendicular to the background magnetic field. We perform a proof-of-concept study to investigate if this heating mechanism may contibute significantly to the energization of planetary ions also in the induced magnetosphere of Venus. We assume Alfvénic fluctuations and estimate the electric field spectral density based on magnetic field observations. We find typical estimated electric spectral densities of a few ( mV/m ) 2 ${(\text{mV/m})}^{2}$ /Hz close to Venus. This corresponds to a heating rate of a few eV/s. We consider an available interaction time of ${\sim} $ 300 s and conclude that this mechanism could increase the energy of an oxygen ion by about a keV. Observed thermal energies are in the range 100–1,000 eV and thus, resonant wave heating may also be important at Venus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信