基于GPS和PALSAR数据的改进计算机电离层层析成像

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Hai-Sheng Zhao, Li-Ming Wang, Zheng-Wen Xu, Jie Feng, Yuan-Yuan Zhang, Hai-Ying Li, Yong Wang, Cheng Wang
{"title":"基于GPS和PALSAR数据的改进计算机电离层层析成像","authors":"Hai-Sheng Zhao,&nbsp;Li-Ming Wang,&nbsp;Zheng-Wen Xu,&nbsp;Jie Feng,&nbsp;Yuan-Yuan Zhang,&nbsp;Hai-Ying Li,&nbsp;Yong Wang,&nbsp;Cheng Wang","doi":"10.1029/2024JA033087","DOIUrl":null,"url":null,"abstract":"<p>Due to factors such as the uneven distribution of ground receiving stations and the lack of effective observation rays, Global Positioning System (GPS)-based computerized ionospheric tomography (CIT) is typically of low quality and requires additional data sources. Recently, Faraday rotation angle (FRA) retrieval using the Phased Array L-band Synthetic Aperture Radar (PALSAR) full-pol data have emerged as a reliable technique for ionospheric detection. Similar to the total electron content (TEC), the FRA is the integral effect of the electron density and geomagnetic field, with the geomagnetic field being accurately estimated by the International Geomagnetic Reference Field (IGRF) model. Therefore, this paper proposes a 3-D secondary CIT algorithm by integrating PALSAR and GPS data: first, the product of the electron density values obtained from GPS-based CIT and the magnitude of geomagnetic field in corresponding voxel obtained from IGRF is used as the initial value. Then, the iterative algorithm is improved by using the FRA obtained from PALSAR data, rather than TEC, as the input for the second iteration, avoiding the approximation error caused by converting FRA into TEC. The geomagnetic field information is then separated by using the IGRF model, and the reconstructed spatial distribution is finally obtained. Experimental verification shows that the FRA can compensate for the lack of GPS observation rays to a certain extent and improve the accuracy of the reconstructed electron density. The results also indicate that the PALSAR can provide an effective and feasible data source for CIT.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Computerized Ionospheric Tomography Based on GPS and PALSAR Data\",\"authors\":\"Hai-Sheng Zhao,&nbsp;Li-Ming Wang,&nbsp;Zheng-Wen Xu,&nbsp;Jie Feng,&nbsp;Yuan-Yuan Zhang,&nbsp;Hai-Ying Li,&nbsp;Yong Wang,&nbsp;Cheng Wang\",\"doi\":\"10.1029/2024JA033087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to factors such as the uneven distribution of ground receiving stations and the lack of effective observation rays, Global Positioning System (GPS)-based computerized ionospheric tomography (CIT) is typically of low quality and requires additional data sources. Recently, Faraday rotation angle (FRA) retrieval using the Phased Array L-band Synthetic Aperture Radar (PALSAR) full-pol data have emerged as a reliable technique for ionospheric detection. Similar to the total electron content (TEC), the FRA is the integral effect of the electron density and geomagnetic field, with the geomagnetic field being accurately estimated by the International Geomagnetic Reference Field (IGRF) model. Therefore, this paper proposes a 3-D secondary CIT algorithm by integrating PALSAR and GPS data: first, the product of the electron density values obtained from GPS-based CIT and the magnitude of geomagnetic field in corresponding voxel obtained from IGRF is used as the initial value. Then, the iterative algorithm is improved by using the FRA obtained from PALSAR data, rather than TEC, as the input for the second iteration, avoiding the approximation error caused by converting FRA into TEC. The geomagnetic field information is then separated by using the IGRF model, and the reconstructed spatial distribution is finally obtained. Experimental verification shows that the FRA can compensate for the lack of GPS observation rays to a certain extent and improve the accuracy of the reconstructed electron density. The results also indicate that the PALSAR can provide an effective and feasible data source for CIT.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033087\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033087","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

由于地面接收站分布不均匀和缺乏有效的观测射线等因素,基于全球定位系统(GPS)的计算机电离层层析成像(CIT)通常质量较低,需要额外的数据源。近年来,利用相控阵l波段合成孔径雷达(PALSAR)全pol数据反演法拉第旋转角(FRA)已成为一种可靠的电离层探测技术。与总电子含量(TEC)类似,总电子含量(FRA)是电子密度和地磁场的积分效应,地磁场由国际地磁场参考场(IGRF)模型精确估计。为此,本文提出了一种结合PALSAR和GPS数据的三维二次CIT算法:首先,利用基于GPS的CIT得到的电子密度值与IGRF得到的相应体素的地磁场强度乘积作为初始值;然后对迭代算法进行改进,将PALSAR数据得到的FRA而不是TEC作为第二次迭代的输入,避免了将FRA转换为TEC产生的近似误差。然后利用IGRF模型分离地磁场信息,最终得到重构的空间分布。实验验证表明,FRA能在一定程度上弥补GPS观测射线的不足,提高重构电子密度的精度。结果还表明,PALSAR可以为CIT提供一个有效可行的数据源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Computerized Ionospheric Tomography Based on GPS and PALSAR Data

Due to factors such as the uneven distribution of ground receiving stations and the lack of effective observation rays, Global Positioning System (GPS)-based computerized ionospheric tomography (CIT) is typically of low quality and requires additional data sources. Recently, Faraday rotation angle (FRA) retrieval using the Phased Array L-band Synthetic Aperture Radar (PALSAR) full-pol data have emerged as a reliable technique for ionospheric detection. Similar to the total electron content (TEC), the FRA is the integral effect of the electron density and geomagnetic field, with the geomagnetic field being accurately estimated by the International Geomagnetic Reference Field (IGRF) model. Therefore, this paper proposes a 3-D secondary CIT algorithm by integrating PALSAR and GPS data: first, the product of the electron density values obtained from GPS-based CIT and the magnitude of geomagnetic field in corresponding voxel obtained from IGRF is used as the initial value. Then, the iterative algorithm is improved by using the FRA obtained from PALSAR data, rather than TEC, as the input for the second iteration, avoiding the approximation error caused by converting FRA into TEC. The geomagnetic field information is then separated by using the IGRF model, and the reconstructed spatial distribution is finally obtained. Experimental verification shows that the FRA can compensate for the lack of GPS observation rays to a certain extent and improve the accuracy of the reconstructed electron density. The results also indicate that the PALSAR can provide an effective and feasible data source for CIT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信