一类非线性时滞分数阶反应扩散方程解的时间正则性和多项式衰减

IF 0.8 3区 数学 Q2 MATHEMATICS
Tran Thi Thu, Tran Van Tuan
{"title":"一类非线性时滞分数阶反应扩散方程解的时间正则性和多项式衰减","authors":"Tran Thi Thu,&nbsp;Tran Van Tuan","doi":"10.1002/mana.202300434","DOIUrl":null,"url":null,"abstract":"<p>This paper is devoted to analyzing the regularity in time and polynomial decay of solutions for a class of fractional reaction–diffusion equations (FrRDEs) involving delays and nonlinear perturbations in a bounded domain of <span></span><math>\n <semantics>\n <msup>\n <mo>R</mo>\n <mi>d</mi>\n </msup>\n <annotation>$\\operatorname{\\mathbf {R}}^{d}$</annotation>\n </semantics></math>. By establishing some regularity estimates in both time and space variables of the resolvent operator, we present results on the Hölder and <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>1</mn>\n </msup>\n <annotation>$C^{1}$</annotation>\n </semantics></math>-regularity in time of solutions for both time-delayed linear and semilinear FrRDEs. Based on the aforementioned results, we study the existence, uniqueness, and regularity of solutions to an identification problem subjected to the delay FrRDE and the additional observations given at final time. Furthermore, under quite reasonable assumptions on nonlinear perturbations and the technique of measure of noncompactness, the existence of decay solutions with polynomial rates for the problem under consideration is shown.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4510-4534"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On temporal regularity and polynomial decay of solutions for a class of nonlinear time-delayed fractional reaction–diffusion equations\",\"authors\":\"Tran Thi Thu,&nbsp;Tran Van Tuan\",\"doi\":\"10.1002/mana.202300434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is devoted to analyzing the regularity in time and polynomial decay of solutions for a class of fractional reaction–diffusion equations (FrRDEs) involving delays and nonlinear perturbations in a bounded domain of <span></span><math>\\n <semantics>\\n <msup>\\n <mo>R</mo>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\operatorname{\\\\mathbf {R}}^{d}$</annotation>\\n </semantics></math>. By establishing some regularity estimates in both time and space variables of the resolvent operator, we present results on the Hölder and <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$C^{1}$</annotation>\\n </semantics></math>-regularity in time of solutions for both time-delayed linear and semilinear FrRDEs. Based on the aforementioned results, we study the existence, uniqueness, and regularity of solutions to an identification problem subjected to the delay FrRDE and the additional observations given at final time. Furthermore, under quite reasonable assumptions on nonlinear perturbations and the technique of measure of noncompactness, the existence of decay solutions with polynomial rates for the problem under consideration is shown.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 12\",\"pages\":\"4510-4534\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300434\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300434","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类包含时滞和非线性扰动的分数阶反应扩散方程(FrRDEs)在R $\operatorname{\mathbf {R}}^{d}$有界域上解的时间规律性和多项式衰减性。通过建立求解算子在时间和空间变量上的一些正则性估计,给出了时滞线性和半线性FrRDEs解的Hölder和c1 $C^{1}$ -时间正则性的结果。在上述结果的基础上,我们研究了一类受延迟FrRDE和最终附加观测值影响的辨识问题解的存在性、唯一性和正则性。此外,在相当合理的非线性摄动假设和非紧性测度技术下,证明了所考虑问题的多项式速率衰减解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On temporal regularity and polynomial decay of solutions for a class of nonlinear time-delayed fractional reaction–diffusion equations

This paper is devoted to analyzing the regularity in time and polynomial decay of solutions for a class of fractional reaction–diffusion equations (FrRDEs) involving delays and nonlinear perturbations in a bounded domain of R d $\operatorname{\mathbf {R}}^{d}$ . By establishing some regularity estimates in both time and space variables of the resolvent operator, we present results on the Hölder and C 1 $C^{1}$ -regularity in time of solutions for both time-delayed linear and semilinear FrRDEs. Based on the aforementioned results, we study the existence, uniqueness, and regularity of solutions to an identification problem subjected to the delay FrRDE and the additional observations given at final time. Furthermore, under quite reasonable assumptions on nonlinear perturbations and the technique of measure of noncompactness, the existence of decay solutions with polynomial rates for the problem under consideration is shown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信