{"title":"Brill-Noether特殊K3曲面上的曲线","authors":"Richard Haburcak","doi":"10.1002/mana.202300403","DOIUrl":null,"url":null,"abstract":"<p>Mukai showed that projective models of Brill–Noether general polarized K3 surfaces of genus 6–10 and 12 are obtained as linear sections of projective homogeneous varieties, and that their hyperplane sections are Brill–Noether general curves. In general, the question, raised by Knutsen, and attributed to Mukai, of whether the Brill–Noether generality of any polarized K3 surface <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(S,H)$</annotation>\n </semantics></math> is equivalent to the Brill–Noether generality of smooth curves <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> in the linear system <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>H</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|H|$</annotation>\n </semantics></math>, is still open. Using Lazarsfeld–Mukai bundle techniques, we answer this question in the affirmative for polarized K3 surfaces of genus <span></span><math>\n <semantics>\n <mrow>\n <mo>≤</mo>\n <mn>19</mn>\n </mrow>\n <annotation>$\\le 19$</annotation>\n </semantics></math>, which provides a new and unified proof even in the genera where Mukai models exist.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4497-4509"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300403","citationCount":"0","resultStr":"{\"title\":\"Curves on Brill–Noether special K3 surfaces\",\"authors\":\"Richard Haburcak\",\"doi\":\"10.1002/mana.202300403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mukai showed that projective models of Brill–Noether general polarized K3 surfaces of genus 6–10 and 12 are obtained as linear sections of projective homogeneous varieties, and that their hyperplane sections are Brill–Noether general curves. In general, the question, raised by Knutsen, and attributed to Mukai, of whether the Brill–Noether generality of any polarized K3 surface <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(S,H)$</annotation>\\n </semantics></math> is equivalent to the Brill–Noether generality of smooth curves <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$C$</annotation>\\n </semantics></math> in the linear system <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>H</mi>\\n <mo>|</mo>\\n </mrow>\\n <annotation>$|H|$</annotation>\\n </semantics></math>, is still open. Using Lazarsfeld–Mukai bundle techniques, we answer this question in the affirmative for polarized K3 surfaces of genus <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>≤</mo>\\n <mn>19</mn>\\n </mrow>\\n <annotation>$\\\\le 19$</annotation>\\n </semantics></math>, which provides a new and unified proof even in the genera where Mukai models exist.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"297 12\",\"pages\":\"4497-4509\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300403\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300403\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300403","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Mukai showed that projective models of Brill–Noether general polarized K3 surfaces of genus 6–10 and 12 are obtained as linear sections of projective homogeneous varieties, and that their hyperplane sections are Brill–Noether general curves. In general, the question, raised by Knutsen, and attributed to Mukai, of whether the Brill–Noether generality of any polarized K3 surface is equivalent to the Brill–Noether generality of smooth curves in the linear system , is still open. Using Lazarsfeld–Mukai bundle techniques, we answer this question in the affirmative for polarized K3 surfaces of genus , which provides a new and unified proof even in the genera where Mukai models exist.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index