{"title":"单位球的dirichlet型空间中的非循环性和多项式","authors":"Dimitrios Vavitsas, Konstantinos Zarvalis","doi":"10.1112/blms.13176","DOIUrl":null,"url":null,"abstract":"<p>We give a description of the intersection of the zero set with the unit sphere of a polynomial that is zero-free in the unit ball of <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>n</mi>\n </msup>\n <annotation>${\\mathbb {C}}^n$</annotation>\n </semantics></math>. This description leads to a necessary condition for a polynomial to be cyclic in Dirichlet-type spaces of the unit ball.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3905-3919"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13176","citationCount":"0","resultStr":"{\"title\":\"Non-cyclicity and polynomials in Dirichlet-type spaces of the unit ball\",\"authors\":\"Dimitrios Vavitsas, Konstantinos Zarvalis\",\"doi\":\"10.1112/blms.13176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a description of the intersection of the zero set with the unit sphere of a polynomial that is zero-free in the unit ball of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>${\\\\mathbb {C}}^n$</annotation>\\n </semantics></math>. This description leads to a necessary condition for a polynomial to be cyclic in Dirichlet-type spaces of the unit ball.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3905-3919\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13176\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13176","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Non-cyclicity and polynomials in Dirichlet-type spaces of the unit ball
We give a description of the intersection of the zero set with the unit sphere of a polynomial that is zero-free in the unit ball of . This description leads to a necessary condition for a polynomial to be cyclic in Dirichlet-type spaces of the unit ball.