Coleman P. Blakely, Damrongsak Wirasaet, Albert R. Cerrone, William J. Pringle, Edward D. Zaron, Steven R. Brus, Gregory N. Seroka, Saeed Moghimi, Edward P. Meyers, Joannes J. Westerink
{"title":"全球异质耦合内/外模式总水位模型中的耗散缩放内波阻力","authors":"Coleman P. Blakely, Damrongsak Wirasaet, Albert R. Cerrone, William J. Pringle, Edward D. Zaron, Steven R. Brus, Gregory N. Seroka, Saeed Moghimi, Edward P. Meyers, Joannes J. Westerink","doi":"10.1029/2024MS004502","DOIUrl":null,"url":null,"abstract":"<p>This study showcases a global, heterogeneously coupled total water level system wherein salinity and temperature outputs from a coarser-resolution (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>12 km) ocean general circulation model are used to calculate density-driven terms within a global, higher-resolution (<span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>2.5 km) depth-averaged total water level model. We demonstrate that the inclusion of baroclinic forcing in the barotropic model requires modification of the internal wave drag term to prevent excess degradation of tidal results compared to the barotropic model. By scaling the internal tide dissipation by an easy to calculate dissipation ratio, the resulting heterogeneously coupled model has complex root mean square errors (RMSE) of 2.27 cm in the deep ocean and 12.16 cm in shallow waters for the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> tidal constituent. While this represents a 10%–20% deterioration as compared to the barotropic model, the improvements in total water level prediction more than offset this degradation. Global median RMSE compared to observations of total water levels, 30-day sea levels, and non-tidal residuals improve by 1.86 (18.5%), 2.55 (42.5%), and 0.36 (5.3%) cm respectively. The drastic improvement in model performance highlights the importance of including density-driven effects within global hydrodynamic models and will help to improve the results of both hindcasts and forecasts in modeling extreme and nuisance flooding. With only an 11% increase in model run time compared to the fully barotropic total water level model, this approach paves the way for high resolution coastal water level and flood models to be used alongside climate models, improving operational forecasting of total water levels.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004502","citationCount":"0","resultStr":"{\"title\":\"Dissipation Scaled Internal Wave Drag in a Global Heterogeneously Coupled Internal/External Mode Total Water Level Model\",\"authors\":\"Coleman P. Blakely, Damrongsak Wirasaet, Albert R. Cerrone, William J. Pringle, Edward D. Zaron, Steven R. Brus, Gregory N. Seroka, Saeed Moghimi, Edward P. Meyers, Joannes J. Westerink\",\"doi\":\"10.1029/2024MS004502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study showcases a global, heterogeneously coupled total water level system wherein salinity and temperature outputs from a coarser-resolution (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>12 km) ocean general circulation model are used to calculate density-driven terms within a global, higher-resolution (<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>2.5 km) depth-averaged total water level model. We demonstrate that the inclusion of baroclinic forcing in the barotropic model requires modification of the internal wave drag term to prevent excess degradation of tidal results compared to the barotropic model. By scaling the internal tide dissipation by an easy to calculate dissipation ratio, the resulting heterogeneously coupled model has complex root mean square errors (RMSE) of 2.27 cm in the deep ocean and 12.16 cm in shallow waters for the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>M</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{M}}_{2}$</annotation>\\n </semantics></math> tidal constituent. While this represents a 10%–20% deterioration as compared to the barotropic model, the improvements in total water level prediction more than offset this degradation. Global median RMSE compared to observations of total water levels, 30-day sea levels, and non-tidal residuals improve by 1.86 (18.5%), 2.55 (42.5%), and 0.36 (5.3%) cm respectively. The drastic improvement in model performance highlights the importance of including density-driven effects within global hydrodynamic models and will help to improve the results of both hindcasts and forecasts in modeling extreme and nuisance flooding. With only an 11% increase in model run time compared to the fully barotropic total water level model, this approach paves the way for high resolution coastal water level and flood models to be used alongside climate models, improving operational forecasting of total water levels.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"16 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004502\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004502\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004502","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Dissipation Scaled Internal Wave Drag in a Global Heterogeneously Coupled Internal/External Mode Total Water Level Model
This study showcases a global, heterogeneously coupled total water level system wherein salinity and temperature outputs from a coarser-resolution (12 km) ocean general circulation model are used to calculate density-driven terms within a global, higher-resolution (2.5 km) depth-averaged total water level model. We demonstrate that the inclusion of baroclinic forcing in the barotropic model requires modification of the internal wave drag term to prevent excess degradation of tidal results compared to the barotropic model. By scaling the internal tide dissipation by an easy to calculate dissipation ratio, the resulting heterogeneously coupled model has complex root mean square errors (RMSE) of 2.27 cm in the deep ocean and 12.16 cm in shallow waters for the tidal constituent. While this represents a 10%–20% deterioration as compared to the barotropic model, the improvements in total water level prediction more than offset this degradation. Global median RMSE compared to observations of total water levels, 30-day sea levels, and non-tidal residuals improve by 1.86 (18.5%), 2.55 (42.5%), and 0.36 (5.3%) cm respectively. The drastic improvement in model performance highlights the importance of including density-driven effects within global hydrodynamic models and will help to improve the results of both hindcasts and forecasts in modeling extreme and nuisance flooding. With only an 11% increase in model run time compared to the fully barotropic total water level model, this approach paves the way for high resolution coastal water level and flood models to be used alongside climate models, improving operational forecasting of total water levels.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.