有限维微分级数代数的反映完备性

IF 0.8 3区 数学 Q2 MATHEMATICS
Isambard Goodbody
{"title":"有限维微分级数代数的反映完备性","authors":"Isambard Goodbody","doi":"10.1112/blms.13160","DOIUrl":null,"url":null,"abstract":"<p>We generalise two facts about finite-dimensional algebras to finite-dimensional differential graded algebras. The first is the Nakayama lemma and the second is that the simples can detect finite projective dimension. We prove two dual versions which relate to Gorenstein differential graded algebras and Koszul duality, respectively. As an application, we prove a corepresentability result for finite-dimensional differential graded algebras.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3689-3707"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13160","citationCount":"0","resultStr":"{\"title\":\"Reflecting perfection for finite-dimensional differential graded algebras\",\"authors\":\"Isambard Goodbody\",\"doi\":\"10.1112/blms.13160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We generalise two facts about finite-dimensional algebras to finite-dimensional differential graded algebras. The first is the Nakayama lemma and the second is that the simples can detect finite projective dimension. We prove two dual versions which relate to Gorenstein differential graded algebras and Koszul duality, respectively. As an application, we prove a corepresentability result for finite-dimensional differential graded algebras.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 12\",\"pages\":\"3689-3707\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13160\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13160\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13160","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将有限维代数的两个事实推广到有限维微分梯度代数。其一是中山引理,其二是单素体可以检测有限的射影维数。我们分别证明了与Gorenstein微分梯度代数和Koszul对偶有关的两个对偶版本。作为应用,我们证明了有限维微分梯度代数的一个可共表示性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reflecting perfection for finite-dimensional differential graded algebras

Reflecting perfection for finite-dimensional differential graded algebras

We generalise two facts about finite-dimensional algebras to finite-dimensional differential graded algebras. The first is the Nakayama lemma and the second is that the simples can detect finite projective dimension. We prove two dual versions which relate to Gorenstein differential graded algebras and Koszul duality, respectively. As an application, we prove a corepresentability result for finite-dimensional differential graded algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信