Devin L. Johnson, Joseph M. Eisaguirre, Rebecca L. Taylor, Erik M. Andersen, Joel L. Garlich-Miller
{"title":"评估在不断变化的环境中捕捞太平洋海象的可持续性","authors":"Devin L. Johnson, Joseph M. Eisaguirre, Rebecca L. Taylor, Erik M. Andersen, Joel L. Garlich-Miller","doi":"10.1002/jwmg.22686","DOIUrl":null,"url":null,"abstract":"<p>Harvest sustainability is a primary goal of wildlife management and conservation, and in a changing world, it is increasingly important to consider environmental drivers of population dynamics alongside harvest in cohesive management plans. This is particularly pertinent for harvested species that acutely experience effects of climate change. The Pacific walrus (<i>Odobenus rosmarus divergens</i>), a crucial subsistence resource for Indigenous communities, is simultaneously subject to rapid habitat loss associated with diminishing sea ice and an increasing anthropogenic footprint in the Arctic. We developed a theta-logistic population modeling-management framework to evaluate various harvest scenarios combined with 4 potential climate and disturbance scenarios (ranging from optimistic to pessimistic, based largely on sea ice projections from general circulation models) to simulate Pacific walrus population dynamics to the end of the twenty-first century, focusing on the independent-aged female subset of the population. We considered 2 types of harvest strategies: 1) state-dependent harvest scenarios wherein we calculated harvest as a percentage of the population and updated annual harvests at set intervals as the population was reassessed, and 2) annually consistent harvest scenarios wherein annual harvest levels remain consistent into the future. All climate and disturbance scenarios indicated declines of varying severity in Pacific walrus abundance to the end of the twenty-first century, even in the absence of harvest. However, we found that a state-dependent annual harvest of 1.23% of the independent-aged female subset of the population (e.g., 1,280 independent-aged females harvested in 2020, similar to contemporary harvest levels) met our criterion for sustainability under all climate and disturbance scenarios, considering a medium risk tolerance level of 25%. This indicates that the present rate of Pacific walrus harvest is sustainable and will continue to be—provided the population is assessed at regular intervals and harvest is adapted to match changes in population dynamics. Our simulations indicate that a sustainable annually-consistent harvest is also possible but only at low levels if the population declines as expected. Applying a constant annual harvest of 1,280 independent-aged females failed to meet our criterion for sustainability under 3 of the 4 climate and disturbance scenarios we evaluated and had a higher probability of quasi-extinction than an equivalent state-dependent harvest scenario (1.23%). We highlight the importance of state-dependent management strategies and suggest our modeling framework is useful for managing harvest sustainability in a changing climate.</p>","PeriodicalId":17504,"journal":{"name":"Journal of Wildlife Management","volume":"89 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jwmg.22686","citationCount":"0","resultStr":"{\"title\":\"Assessing the sustainability of Pacific walrus harvest in a changing environment\",\"authors\":\"Devin L. Johnson, Joseph M. Eisaguirre, Rebecca L. Taylor, Erik M. Andersen, Joel L. Garlich-Miller\",\"doi\":\"10.1002/jwmg.22686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Harvest sustainability is a primary goal of wildlife management and conservation, and in a changing world, it is increasingly important to consider environmental drivers of population dynamics alongside harvest in cohesive management plans. This is particularly pertinent for harvested species that acutely experience effects of climate change. The Pacific walrus (<i>Odobenus rosmarus divergens</i>), a crucial subsistence resource for Indigenous communities, is simultaneously subject to rapid habitat loss associated with diminishing sea ice and an increasing anthropogenic footprint in the Arctic. We developed a theta-logistic population modeling-management framework to evaluate various harvest scenarios combined with 4 potential climate and disturbance scenarios (ranging from optimistic to pessimistic, based largely on sea ice projections from general circulation models) to simulate Pacific walrus population dynamics to the end of the twenty-first century, focusing on the independent-aged female subset of the population. We considered 2 types of harvest strategies: 1) state-dependent harvest scenarios wherein we calculated harvest as a percentage of the population and updated annual harvests at set intervals as the population was reassessed, and 2) annually consistent harvest scenarios wherein annual harvest levels remain consistent into the future. All climate and disturbance scenarios indicated declines of varying severity in Pacific walrus abundance to the end of the twenty-first century, even in the absence of harvest. However, we found that a state-dependent annual harvest of 1.23% of the independent-aged female subset of the population (e.g., 1,280 independent-aged females harvested in 2020, similar to contemporary harvest levels) met our criterion for sustainability under all climate and disturbance scenarios, considering a medium risk tolerance level of 25%. This indicates that the present rate of Pacific walrus harvest is sustainable and will continue to be—provided the population is assessed at regular intervals and harvest is adapted to match changes in population dynamics. Our simulations indicate that a sustainable annually-consistent harvest is also possible but only at low levels if the population declines as expected. Applying a constant annual harvest of 1,280 independent-aged females failed to meet our criterion for sustainability under 3 of the 4 climate and disturbance scenarios we evaluated and had a higher probability of quasi-extinction than an equivalent state-dependent harvest scenario (1.23%). We highlight the importance of state-dependent management strategies and suggest our modeling framework is useful for managing harvest sustainability in a changing climate.</p>\",\"PeriodicalId\":17504,\"journal\":{\"name\":\"Journal of Wildlife Management\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jwmg.22686\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wildlife Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jwmg.22686\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wildlife Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jwmg.22686","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Assessing the sustainability of Pacific walrus harvest in a changing environment
Harvest sustainability is a primary goal of wildlife management and conservation, and in a changing world, it is increasingly important to consider environmental drivers of population dynamics alongside harvest in cohesive management plans. This is particularly pertinent for harvested species that acutely experience effects of climate change. The Pacific walrus (Odobenus rosmarus divergens), a crucial subsistence resource for Indigenous communities, is simultaneously subject to rapid habitat loss associated with diminishing sea ice and an increasing anthropogenic footprint in the Arctic. We developed a theta-logistic population modeling-management framework to evaluate various harvest scenarios combined with 4 potential climate and disturbance scenarios (ranging from optimistic to pessimistic, based largely on sea ice projections from general circulation models) to simulate Pacific walrus population dynamics to the end of the twenty-first century, focusing on the independent-aged female subset of the population. We considered 2 types of harvest strategies: 1) state-dependent harvest scenarios wherein we calculated harvest as a percentage of the population and updated annual harvests at set intervals as the population was reassessed, and 2) annually consistent harvest scenarios wherein annual harvest levels remain consistent into the future. All climate and disturbance scenarios indicated declines of varying severity in Pacific walrus abundance to the end of the twenty-first century, even in the absence of harvest. However, we found that a state-dependent annual harvest of 1.23% of the independent-aged female subset of the population (e.g., 1,280 independent-aged females harvested in 2020, similar to contemporary harvest levels) met our criterion for sustainability under all climate and disturbance scenarios, considering a medium risk tolerance level of 25%. This indicates that the present rate of Pacific walrus harvest is sustainable and will continue to be—provided the population is assessed at regular intervals and harvest is adapted to match changes in population dynamics. Our simulations indicate that a sustainable annually-consistent harvest is also possible but only at low levels if the population declines as expected. Applying a constant annual harvest of 1,280 independent-aged females failed to meet our criterion for sustainability under 3 of the 4 climate and disturbance scenarios we evaluated and had a higher probability of quasi-extinction than an equivalent state-dependent harvest scenario (1.23%). We highlight the importance of state-dependent management strategies and suggest our modeling framework is useful for managing harvest sustainability in a changing climate.
期刊介绍:
The Journal of Wildlife Management publishes manuscripts containing information from original research that contributes to basic wildlife science. Suitable topics include investigations into the biology and ecology of wildlife and their habitats that has direct or indirect implications for wildlife management and conservation. This includes basic information on wildlife habitat use, reproduction, genetics, demographics, viability, predator-prey relationships, space-use, movements, behavior, and physiology; but within the context of contemporary management and conservation issues such that the knowledge may ultimately be useful to wildlife practitioners. Also considered are theoretical and conceptual aspects of wildlife science, including development of new approaches to quantitative analyses, modeling of wildlife populations and habitats, and other topics that are germane to advancing wildlife science. Limited reviews or meta analyses will be considered if they provide a meaningful new synthesis or perspective on an appropriate subject. Direct evaluation of management practices or policies should be sent to the Wildlife Society Bulletin, as should papers reporting new tools or techniques. However, papers that report new tools or techniques, or effects of management practices, within the context of a broader study investigating basic wildlife biology and ecology will be considered by The Journal of Wildlife Management. Book reviews of relevant topics in basic wildlife research and biology.