利用HEC-RAS(5.0.7)软件对三种不同卫星数据进行二维洪水建模的比较,并探讨RAS Mapper工具的改进能力

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yunus Ziya Kaya, Fatih Üneş
{"title":"利用HEC-RAS(5.0.7)软件对三种不同卫星数据进行二维洪水建模的比较,并探讨RAS Mapper工具的改进能力","authors":"Yunus Ziya Kaya,&nbsp;Fatih Üneş","doi":"10.1111/jfr3.13046","DOIUrl":null,"url":null,"abstract":"<p>Flood modeling is essential to determine and protect vulnerable areas. However, due to complexity of flooding, it is challenging to model floods with a high level of sensitivity. While many factors affect flood models' accuracy, topography is among the most critical. With developing technologies, designing high-accuracy topographical data is becoming more feasible, especially for small catchments. In this study, the authors focus on macro-scale modeling using different types of satellite data across the Amik Plain; a large plain with a complex stream network. SRTM, Aster, and Alos Palsar satellite data were used to create digital terrain models (DTMs). The pre-evaluation of the results showed that even the main streams in the Amik Plain were not visible. So, the geometry of the streams was created and added to the digital elevation models using the HEC-RAS software RAS Mapper tool. A flood in 2012 was simulated using all three improved DTMs. As a result, it is seen that an enhanced version of the DTM created from SRTM data provides the best performance for use in macro-scale flood modeling. The usage of the RAS Mapper tool as a GIS tool also performed well in the case of DTM improvements. The DTM improvements on the satellite data for the large plains can give a fairly reasonable output instead of using high-cost sensitive data.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13046","citationCount":"0","resultStr":"{\"title\":\"Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool\",\"authors\":\"Yunus Ziya Kaya,&nbsp;Fatih Üneş\",\"doi\":\"10.1111/jfr3.13046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flood modeling is essential to determine and protect vulnerable areas. However, due to complexity of flooding, it is challenging to model floods with a high level of sensitivity. While many factors affect flood models' accuracy, topography is among the most critical. With developing technologies, designing high-accuracy topographical data is becoming more feasible, especially for small catchments. In this study, the authors focus on macro-scale modeling using different types of satellite data across the Amik Plain; a large plain with a complex stream network. SRTM, Aster, and Alos Palsar satellite data were used to create digital terrain models (DTMs). The pre-evaluation of the results showed that even the main streams in the Amik Plain were not visible. So, the geometry of the streams was created and added to the digital elevation models using the HEC-RAS software RAS Mapper tool. A flood in 2012 was simulated using all three improved DTMs. As a result, it is seen that an enhanced version of the DTM created from SRTM data provides the best performance for use in macro-scale flood modeling. The usage of the RAS Mapper tool as a GIS tool also performed well in the case of DTM improvements. The DTM improvements on the satellite data for the large plains can give a fairly reasonable output instead of using high-cost sensitive data.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13046\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13046","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

洪水建模对于确定和保护脆弱地区至关重要。然而,由于洪水的复杂性,建立具有高灵敏度的洪水模型是一项挑战。虽然有许多因素影响洪水模型的准确性,但地形是最关键的因素之一。随着技术的发展,设计高精度的地形数据变得越来越可行,特别是对于小流域。在这项研究中,作者着重于使用不同类型的卫星数据在整个阿米克平原进行宏观尺度建模;一大片平原,有复杂的水系。使用SRTM、Aster和Alos Palsar卫星数据创建数字地形模型(dtm)。预评价结果表明,阿姆克平原的干流也不明显。因此,使用HEC-RAS软件RAS Mapper工具创建了溪流的几何形状,并将其添加到数字高程模型中。2012年的一次洪水模拟使用了所有三种改进的dtm。因此,从SRTM数据创建的增强版DTM在宏观尺度洪水建模中提供了最好的性能。在DTM改进的情况下,RAS Mapper工具作为GIS工具的使用也表现良好。对大平原地区卫星数据进行DTM改进,可以代替使用高成本敏感数据,得到较为合理的输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool

Comparison of three different satellite data on 2D flood modeling using HEC-RAS (5.0.7) software and investigating the improvement ability of the RAS Mapper tool

Flood modeling is essential to determine and protect vulnerable areas. However, due to complexity of flooding, it is challenging to model floods with a high level of sensitivity. While many factors affect flood models' accuracy, topography is among the most critical. With developing technologies, designing high-accuracy topographical data is becoming more feasible, especially for small catchments. In this study, the authors focus on macro-scale modeling using different types of satellite data across the Amik Plain; a large plain with a complex stream network. SRTM, Aster, and Alos Palsar satellite data were used to create digital terrain models (DTMs). The pre-evaluation of the results showed that even the main streams in the Amik Plain were not visible. So, the geometry of the streams was created and added to the digital elevation models using the HEC-RAS software RAS Mapper tool. A flood in 2012 was simulated using all three improved DTMs. As a result, it is seen that an enhanced version of the DTM created from SRTM data provides the best performance for use in macro-scale flood modeling. The usage of the RAS Mapper tool as a GIS tool also performed well in the case of DTM improvements. The DTM improvements on the satellite data for the large plains can give a fairly reasonable output instead of using high-cost sensitive data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信