{"title":"什么是宏观国家?主观观察与客观动态","authors":"Cosma Rohilla Shalizi, Cristopher Moore","doi":"10.1007/s10701-024-00814-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the question of whether thermodynamic macrostates are objective consequences of dynamics, or subjective reflections of our ignorance of a physical system. We argue that they are both; more specifically, that the set of macrostates forms the unique maximal partition of phase space which (1) is consistent with our observations (a subjective fact about our ability to observe the system) and (2) obeys a Markov process (an objective fact about the system’s dynamics). We review the ideas of computational mechanics, an information-theoretic method for finding optimal causal models of stochastic processes, and argue that macrostates coincide with the “causal states” of computational mechanics. Defining a set of macrostates thus consists of an inductive process where we start with a given set of observables, and then refine our partition of phase space until we reach a set of states which predict their own future, i.e. which are Markovian. Macrostates arrived at in this way are provably optimal statistical predictors of the future values of our observables.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Is a Macrostate? Subjective Observations and Objective Dynamics\",\"authors\":\"Cosma Rohilla Shalizi, Cristopher Moore\",\"doi\":\"10.1007/s10701-024-00814-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the question of whether thermodynamic macrostates are objective consequences of dynamics, or subjective reflections of our ignorance of a physical system. We argue that they are both; more specifically, that the set of macrostates forms the unique maximal partition of phase space which (1) is consistent with our observations (a subjective fact about our ability to observe the system) and (2) obeys a Markov process (an objective fact about the system’s dynamics). We review the ideas of computational mechanics, an information-theoretic method for finding optimal causal models of stochastic processes, and argue that macrostates coincide with the “causal states” of computational mechanics. Defining a set of macrostates thus consists of an inductive process where we start with a given set of observables, and then refine our partition of phase space until we reach a set of states which predict their own future, i.e. which are Markovian. Macrostates arrived at in this way are provably optimal statistical predictors of the future values of our observables.</p></div>\",\"PeriodicalId\":569,\"journal\":{\"name\":\"Foundations of Physics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10701-024-00814-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-024-00814-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
What Is a Macrostate? Subjective Observations and Objective Dynamics
We consider the question of whether thermodynamic macrostates are objective consequences of dynamics, or subjective reflections of our ignorance of a physical system. We argue that they are both; more specifically, that the set of macrostates forms the unique maximal partition of phase space which (1) is consistent with our observations (a subjective fact about our ability to observe the system) and (2) obeys a Markov process (an objective fact about the system’s dynamics). We review the ideas of computational mechanics, an information-theoretic method for finding optimal causal models of stochastic processes, and argue that macrostates coincide with the “causal states” of computational mechanics. Defining a set of macrostates thus consists of an inductive process where we start with a given set of observables, and then refine our partition of phase space until we reach a set of states which predict their own future, i.e. which are Markovian. Macrostates arrived at in this way are provably optimal statistical predictors of the future values of our observables.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.