百里香醌包封的苦楝油l100固体脂质纳米颗粒的药代动力学及脑肿瘤递送研究

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Jeganpandi Senthamarai Pandi, Parasuraman Pavadai, Lakshmi M. Sundar, Murugesan Sankaranarayanan, Theivendren Panneerselvam, Sureshbabu Ram Kumar Pandian, Selvaraj Kunjiappan
{"title":"百里香醌包封的苦楝油l100固体脂质纳米颗粒的药代动力学及脑肿瘤递送研究","authors":"Jeganpandi Senthamarai Pandi,&nbsp;Parasuraman Pavadai,&nbsp;Lakshmi M. Sundar,&nbsp;Murugesan Sankaranarayanan,&nbsp;Theivendren Panneerselvam,&nbsp;Sureshbabu Ram Kumar Pandian,&nbsp;Selvaraj Kunjiappan","doi":"10.1007/s10876-024-02751-5","DOIUrl":null,"url":null,"abstract":"<div><p>Brain tumor is one of the deadliest types of cancer in the world. The basic necessity of brain tumor-targeted therapy is to reach and accumulate the required quantity in the tumor microenvironment while maintaining therapeutic efficacy. In this regard, the current study sought to create thymoquinone-encapsulated Eudragit L100-coated solid lipid nanoparticles (TQ-encapsulated E-SLNs) for the transport of loaded thymoquinone (TQ) to the brain. TQ-encapsulated E-SLNs were formulated using the oil-in-water microemulsion process, and their physicochemical properties were investigated. TQ encapsulation, loading capacity, and release behavior of E-SLNs were also investigated. In vivo biodistribution studies were conducted to assess TQ delivery and accumulation in several organs of female Wistar rats. The TQ-encapsulated E-SLNs were mostly spherical with a crystalline structure and extremely stable in the physiological buffer system. The highest content of TQ was released in pH 5.5 (78.215 ± 0.749%) at 22 h. The pharmacokinetics and biodistribution investigations revealed that released TQ from TQ-encapsulated E-SLNs after 48 h of administration accumulated 16.5 ± 1.5% in brain, 21.167 ± 1.041% in kidneys, 12.125 ± 0.781% in heart, 16.375 ± 1.317% in liver, 13.5 ± 1.8% in lungs, and 17.15 ± 1.5%. Later, molecular modeling studies revealed that TQ had a greater binding energy of -7.8 kcal/mol to EGFR. Thymoquinone binding energy was very close to the reference drug Temozolomide. Molecular dynamics simulation studies showed that the TQ-EGFR docked complex was extremely stable up to 100 ns. The findings showed that the fabricated TQ-encapsulated E-SLNs remained unchanging in circulation for up to five days. Therefore, E-SLNs fabrications show promise as a method for targeting brain malignancies across the BBB.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacokinetics and Brain Tumor Delivery Studies of Thymoquinone-Encapsulated Eudragit L100-Coated Solid-Lipid Nanoparticles\",\"authors\":\"Jeganpandi Senthamarai Pandi,&nbsp;Parasuraman Pavadai,&nbsp;Lakshmi M. Sundar,&nbsp;Murugesan Sankaranarayanan,&nbsp;Theivendren Panneerselvam,&nbsp;Sureshbabu Ram Kumar Pandian,&nbsp;Selvaraj Kunjiappan\",\"doi\":\"10.1007/s10876-024-02751-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Brain tumor is one of the deadliest types of cancer in the world. The basic necessity of brain tumor-targeted therapy is to reach and accumulate the required quantity in the tumor microenvironment while maintaining therapeutic efficacy. In this regard, the current study sought to create thymoquinone-encapsulated Eudragit L100-coated solid lipid nanoparticles (TQ-encapsulated E-SLNs) for the transport of loaded thymoquinone (TQ) to the brain. TQ-encapsulated E-SLNs were formulated using the oil-in-water microemulsion process, and their physicochemical properties were investigated. TQ encapsulation, loading capacity, and release behavior of E-SLNs were also investigated. In vivo biodistribution studies were conducted to assess TQ delivery and accumulation in several organs of female Wistar rats. The TQ-encapsulated E-SLNs were mostly spherical with a crystalline structure and extremely stable in the physiological buffer system. The highest content of TQ was released in pH 5.5 (78.215 ± 0.749%) at 22 h. The pharmacokinetics and biodistribution investigations revealed that released TQ from TQ-encapsulated E-SLNs after 48 h of administration accumulated 16.5 ± 1.5% in brain, 21.167 ± 1.041% in kidneys, 12.125 ± 0.781% in heart, 16.375 ± 1.317% in liver, 13.5 ± 1.8% in lungs, and 17.15 ± 1.5%. Later, molecular modeling studies revealed that TQ had a greater binding energy of -7.8 kcal/mol to EGFR. Thymoquinone binding energy was very close to the reference drug Temozolomide. Molecular dynamics simulation studies showed that the TQ-EGFR docked complex was extremely stable up to 100 ns. The findings showed that the fabricated TQ-encapsulated E-SLNs remained unchanging in circulation for up to five days. Therefore, E-SLNs fabrications show promise as a method for targeting brain malignancies across the BBB.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02751-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02751-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

脑瘤是世界上最致命的癌症之一。脑肿瘤靶向治疗的基本需要是在维持治疗效果的同时,在肿瘤微环境中达到并积累所需的量。在这方面,目前的研究试图创造百里香醌包被的Eudragit l100包被固体脂质纳米颗粒(TQ包被的e- sln),用于将负载的百里香醌(TQ)运输到大脑。采用水包油微乳液法制备了tq包封的e - sln,并对其理化性质进行了研究。研究了e - sln的TQ包封、载药能力和释放行为。通过体内生物分布研究来评估TQ在雌性Wistar大鼠几个器官中的传递和积累。tq包封的e - sln大多呈球形,呈晶体结构,在生理缓冲系统中非常稳定。经药代动力学和生物分布研究发现,TQ包封的e - sln在给药48 h后,TQ在脑(16.5±1.5%)、肾脏(21.167±1.041%)、心脏(12.125±0.781%)、肝脏(16.375±1.317%)、肺部(13.5±1.8%)和17.15±1.5%释放量最高(78.215±0.749%)。随后的分子模拟研究表明,TQ对EGFR的结合能更高,为-7.8 kcal/mol。百里醌的结合能与参比药物替莫唑胺非常接近。分子动力学模拟研究表明,TQ-EGFR对接复合物在100 ns内非常稳定。研究结果表明,制备的tq封装的e - sln在循环中保持不变长达5天。因此,e - sln的制造有望成为跨越血脑屏障靶向脑恶性肿瘤的一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmacokinetics and Brain Tumor Delivery Studies of Thymoquinone-Encapsulated Eudragit L100-Coated Solid-Lipid Nanoparticles

Brain tumor is one of the deadliest types of cancer in the world. The basic necessity of brain tumor-targeted therapy is to reach and accumulate the required quantity in the tumor microenvironment while maintaining therapeutic efficacy. In this regard, the current study sought to create thymoquinone-encapsulated Eudragit L100-coated solid lipid nanoparticles (TQ-encapsulated E-SLNs) for the transport of loaded thymoquinone (TQ) to the brain. TQ-encapsulated E-SLNs were formulated using the oil-in-water microemulsion process, and their physicochemical properties were investigated. TQ encapsulation, loading capacity, and release behavior of E-SLNs were also investigated. In vivo biodistribution studies were conducted to assess TQ delivery and accumulation in several organs of female Wistar rats. The TQ-encapsulated E-SLNs were mostly spherical with a crystalline structure and extremely stable in the physiological buffer system. The highest content of TQ was released in pH 5.5 (78.215 ± 0.749%) at 22 h. The pharmacokinetics and biodistribution investigations revealed that released TQ from TQ-encapsulated E-SLNs after 48 h of administration accumulated 16.5 ± 1.5% in brain, 21.167 ± 1.041% in kidneys, 12.125 ± 0.781% in heart, 16.375 ± 1.317% in liver, 13.5 ± 1.8% in lungs, and 17.15 ± 1.5%. Later, molecular modeling studies revealed that TQ had a greater binding energy of -7.8 kcal/mol to EGFR. Thymoquinone binding energy was very close to the reference drug Temozolomide. Molecular dynamics simulation studies showed that the TQ-EGFR docked complex was extremely stable up to 100 ns. The findings showed that the fabricated TQ-encapsulated E-SLNs remained unchanging in circulation for up to five days. Therefore, E-SLNs fabrications show promise as a method for targeting brain malignancies across the BBB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信