{"title":"通过 Kr 离子束产生的表面缺陷增强 MoS2 薄膜晶体管的迁移率","authors":"Deepika Gupta, Sonica Upadhyay, Abhimanyu Singh Rana, Satyendra Kumar, Deepika, Aniket Bharti, Vivek Kumar Malik, Sanjay Kumar Sharma, Manoj Kumar Khanna, Rajesh Kumar","doi":"10.1007/s11664-024-11533-8","DOIUrl":null,"url":null,"abstract":"<div><p>Molybdenum disulfide (MoS<sub>2</sub>) has been found to be a promising material for electronic and optoelectronic device applications due to its unique optical and electrical characteristics. However, the large-scale synthesis of MoS<sub>2</sub> thin films is limited by challenges in achieving reproducible and uniform device fabrication. In the present study, we utilized a sputtering technique and post-treatment by ion beam irradiation for large-scale fabrication of uniform MoS<sub>2</sub> thin films. The effects of the low-energy ion beam on the optical, structural, electrical transport, and morphological characteristics of the MoS<sub>2</sub> thin films were studied by Raman spectroscopy, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and electrical transport analysis. Tuning the electrical and optical characteristics of few- and monolayer MoS<sub>2</sub> through regulation of defects provides an excellent approach for fabricating two-dimensional (2D) MoS<sub>2</sub> thin films for electronic device applications. Thin film transistors (TFTs) have been widely studied for driving active-matrix displays given their promising electrical characteristics including significant on/off current ratio and mobility. In the present work, we report a back-gate MoS<sub>2</sub> TFT fabricated by sputtering. TFTs based on MoS<sub>2</sub> thin films were fabricated, and the current–voltage characteristics were studied at room temperature, which confirmed that the transport behavior differed between the pristine and ion-irradiated samples. Pristine MoS<sub>2</sub>-based TFTs displayed significant Schottky barrier effects, resulting in lower mobility than ion-irradiated samples. Our comprehensive study focuses on the fundamental transport characteristics via the metal–MoS<sub>2</sub>interface, which represents a substantial step towards achieving highly efficient electronic devices based on 2D semiconductors.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"191 - 204"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Mobility in MoS2 Thin Film Transistors Through Kr Ion Beam-Generated Surface Defects\",\"authors\":\"Deepika Gupta, Sonica Upadhyay, Abhimanyu Singh Rana, Satyendra Kumar, Deepika, Aniket Bharti, Vivek Kumar Malik, Sanjay Kumar Sharma, Manoj Kumar Khanna, Rajesh Kumar\",\"doi\":\"10.1007/s11664-024-11533-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molybdenum disulfide (MoS<sub>2</sub>) has been found to be a promising material for electronic and optoelectronic device applications due to its unique optical and electrical characteristics. However, the large-scale synthesis of MoS<sub>2</sub> thin films is limited by challenges in achieving reproducible and uniform device fabrication. In the present study, we utilized a sputtering technique and post-treatment by ion beam irradiation for large-scale fabrication of uniform MoS<sub>2</sub> thin films. The effects of the low-energy ion beam on the optical, structural, electrical transport, and morphological characteristics of the MoS<sub>2</sub> thin films were studied by Raman spectroscopy, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and electrical transport analysis. Tuning the electrical and optical characteristics of few- and monolayer MoS<sub>2</sub> through regulation of defects provides an excellent approach for fabricating two-dimensional (2D) MoS<sub>2</sub> thin films for electronic device applications. Thin film transistors (TFTs) have been widely studied for driving active-matrix displays given their promising electrical characteristics including significant on/off current ratio and mobility. In the present work, we report a back-gate MoS<sub>2</sub> TFT fabricated by sputtering. TFTs based on MoS<sub>2</sub> thin films were fabricated, and the current–voltage characteristics were studied at room temperature, which confirmed that the transport behavior differed between the pristine and ion-irradiated samples. Pristine MoS<sub>2</sub>-based TFTs displayed significant Schottky barrier effects, resulting in lower mobility than ion-irradiated samples. Our comprehensive study focuses on the fundamental transport characteristics via the metal–MoS<sub>2</sub>interface, which represents a substantial step towards achieving highly efficient electronic devices based on 2D semiconductors.</p></div>\",\"PeriodicalId\":626,\"journal\":{\"name\":\"Journal of Electronic Materials\",\"volume\":\"54 1\",\"pages\":\"191 - 204\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11664-024-11533-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11533-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhanced Mobility in MoS2 Thin Film Transistors Through Kr Ion Beam-Generated Surface Defects
Molybdenum disulfide (MoS2) has been found to be a promising material for electronic and optoelectronic device applications due to its unique optical and electrical characteristics. However, the large-scale synthesis of MoS2 thin films is limited by challenges in achieving reproducible and uniform device fabrication. In the present study, we utilized a sputtering technique and post-treatment by ion beam irradiation for large-scale fabrication of uniform MoS2 thin films. The effects of the low-energy ion beam on the optical, structural, electrical transport, and morphological characteristics of the MoS2 thin films were studied by Raman spectroscopy, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and electrical transport analysis. Tuning the electrical and optical characteristics of few- and monolayer MoS2 through regulation of defects provides an excellent approach for fabricating two-dimensional (2D) MoS2 thin films for electronic device applications. Thin film transistors (TFTs) have been widely studied for driving active-matrix displays given their promising electrical characteristics including significant on/off current ratio and mobility. In the present work, we report a back-gate MoS2 TFT fabricated by sputtering. TFTs based on MoS2 thin films were fabricated, and the current–voltage characteristics were studied at room temperature, which confirmed that the transport behavior differed between the pristine and ion-irradiated samples. Pristine MoS2-based TFTs displayed significant Schottky barrier effects, resulting in lower mobility than ion-irradiated samples. Our comprehensive study focuses on the fundamental transport characteristics via the metal–MoS2interface, which represents a substantial step towards achieving highly efficient electronic devices based on 2D semiconductors.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.