基于深度学习理论的高性能齿轮疲劳寿命预测方法研究

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
JOM Pub Date : 2024-12-16 DOI:10.1007/s11837-024-06952-1
Xingbin Chen, Yanxia Xu, Xilong Zhang, Yibing Yin
{"title":"基于深度学习理论的高性能齿轮疲劳寿命预测方法研究","authors":"Xingbin Chen,&nbsp;Yanxia Xu,&nbsp;Xilong Zhang,&nbsp;Yibing Yin","doi":"10.1007/s11837-024-06952-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies fatigue application scenarios for high-performance gears and other mechanical components. It addresses the limitations of internal encapsulation detection and challenges of long-cycle tests. The paper proposes an intelligent prediction method for fatigue features, utilizing visual detection and accelerated degradation life. It integrates conventional test benches and environmental reliability accelerated test conditions, conducts in-depth research on fatigue life estimation algorithms, and explores the feasibility of employing deep learning algorithms and failure prediction models for fatigue life prediction. The paper also establishes an algorithmic system architecture that integrates and processes information from multiple systems and sensors, including gear fatigue performance driving and fatigue monitoring. This approach enables the rapid identification of early micro-motion fatigue characteristics, online autonomous detection, and intelligent failure estimation by integrating information from various systems and sensors. It can accurately predict fatigue degradation and provide a basis for adopting a rational anti-fatigue optimization design.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 1","pages":"61 - 75"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on High-Performance Gear Fatigue Life Prediction Method Based on Deep Learning Theories\",\"authors\":\"Xingbin Chen,&nbsp;Yanxia Xu,&nbsp;Xilong Zhang,&nbsp;Yibing Yin\",\"doi\":\"10.1007/s11837-024-06952-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies fatigue application scenarios for high-performance gears and other mechanical components. It addresses the limitations of internal encapsulation detection and challenges of long-cycle tests. The paper proposes an intelligent prediction method for fatigue features, utilizing visual detection and accelerated degradation life. It integrates conventional test benches and environmental reliability accelerated test conditions, conducts in-depth research on fatigue life estimation algorithms, and explores the feasibility of employing deep learning algorithms and failure prediction models for fatigue life prediction. The paper also establishes an algorithmic system architecture that integrates and processes information from multiple systems and sensors, including gear fatigue performance driving and fatigue monitoring. This approach enables the rapid identification of early micro-motion fatigue characteristics, online autonomous detection, and intelligent failure estimation by integrating information from various systems and sensors. It can accurately predict fatigue degradation and provide a basis for adopting a rational anti-fatigue optimization design.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"77 1\",\"pages\":\"61 - 75\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-024-06952-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06952-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了高性能齿轮和其他机械部件的疲劳应用场景。它解决了内部封装检测的局限性和长周期测试的挑战。论文提出了一种利用视觉检测和加速退化寿命的疲劳特征智能预测方法。它整合了传统试验台和环境可靠性加速试验条件,对疲劳寿命估算算法进行了深入研究,并探索了采用深度学习算法和失效预测模型进行疲劳寿命预测的可行性。论文还建立了一个算法系统架构,可集成和处理来自多个系统和传感器的信息,包括齿轮疲劳性能驾驶和疲劳监测。这种方法通过整合来自不同系统和传感器的信息,实现了早期微动疲劳特征的快速识别、在线自主检测和智能故障预估。它能准确预测疲劳退化,为采用合理的抗疲劳优化设计提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Study on High-Performance Gear Fatigue Life Prediction Method Based on Deep Learning Theories

Study on High-Performance Gear Fatigue Life Prediction Method Based on Deep Learning Theories

This paper studies fatigue application scenarios for high-performance gears and other mechanical components. It addresses the limitations of internal encapsulation detection and challenges of long-cycle tests. The paper proposes an intelligent prediction method for fatigue features, utilizing visual detection and accelerated degradation life. It integrates conventional test benches and environmental reliability accelerated test conditions, conducts in-depth research on fatigue life estimation algorithms, and explores the feasibility of employing deep learning algorithms and failure prediction models for fatigue life prediction. The paper also establishes an algorithmic system architecture that integrates and processes information from multiple systems and sensors, including gear fatigue performance driving and fatigue monitoring. This approach enables the rapid identification of early micro-motion fatigue characteristics, online autonomous detection, and intelligent failure estimation by integrating information from various systems and sensors. It can accurately predict fatigue degradation and provide a basis for adopting a rational anti-fatigue optimization design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信