Thanet Pitakbut, Jennifer Munkert, Wenhui Xi, Yanjie Wei, Gregor Fuhrmann
{"title":"利用基于机器学习的QSAR模型克服β -内酰胺酶抑制剂筛选中的独立共识对接限制:一项概念验证研究","authors":"Thanet Pitakbut, Jennifer Munkert, Wenhui Xi, Yanjie Wei, Gregor Fuhrmann","doi":"10.1186/s13065-024-01324-x","DOIUrl":null,"url":null,"abstract":"<div><p>In virtual drug screening, consensus docking is a standard in-silico approach consisting of a combined result from optimized docking experiments, a minimum of two results combination. Therefore, consensus docking is subjected to a lower success rate than the best docking method due to its mathematical nature, an unavoidable limitation. This study aims to overcome this drawback via random forest, an ensemble machine learning model. First, in vitro beta-lactamase inhibitory screening was performed using an in-house chemical library. The in vitro results were later used as a validation. Consequently, we optimized docking protocols for AutoDock Vina and DOCK6 programs. With an appropriate scoring function, we found that DOCK6 could identify up to 70% of all active molecules, double the inappropriate. Further consensus analysis reduced the success rate to 50%. Simultaneously, a false positive rate was down to 16%, which was experimentally favorable for a drug search. Finally, we trained two quantitative structure-activity relationship (QSAR) models using logistic regression as a reference model and a random forest as a test model. After combining consensus docking results, random forest-based QSAR outperformed a logistic regression by restoring the success rate to 70% and maintaining a low false positive rate of around 21%. In conclusion, this study demonstrated the benefit of using a random forest (machine learning)-based QSAR model to overcome a standard consensus docking limitation in beta-lactamase inhibitor search as a proof-of-concept.</p></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01324-x","citationCount":"0","resultStr":"{\"title\":\"Utilizing machine learning-based QSAR model to overcome standalone consensus docking limitation in beta-lactamase inhibitors screening: a proof-of-concept study\",\"authors\":\"Thanet Pitakbut, Jennifer Munkert, Wenhui Xi, Yanjie Wei, Gregor Fuhrmann\",\"doi\":\"10.1186/s13065-024-01324-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In virtual drug screening, consensus docking is a standard in-silico approach consisting of a combined result from optimized docking experiments, a minimum of two results combination. Therefore, consensus docking is subjected to a lower success rate than the best docking method due to its mathematical nature, an unavoidable limitation. This study aims to overcome this drawback via random forest, an ensemble machine learning model. First, in vitro beta-lactamase inhibitory screening was performed using an in-house chemical library. The in vitro results were later used as a validation. Consequently, we optimized docking protocols for AutoDock Vina and DOCK6 programs. With an appropriate scoring function, we found that DOCK6 could identify up to 70% of all active molecules, double the inappropriate. Further consensus analysis reduced the success rate to 50%. Simultaneously, a false positive rate was down to 16%, which was experimentally favorable for a drug search. Finally, we trained two quantitative structure-activity relationship (QSAR) models using logistic regression as a reference model and a random forest as a test model. After combining consensus docking results, random forest-based QSAR outperformed a logistic regression by restoring the success rate to 70% and maintaining a low false positive rate of around 21%. In conclusion, this study demonstrated the benefit of using a random forest (machine learning)-based QSAR model to overcome a standard consensus docking limitation in beta-lactamase inhibitor search as a proof-of-concept.</p></div>\",\"PeriodicalId\":496,\"journal\":{\"name\":\"BMC Chemistry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01324-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13065-024-01324-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01324-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Utilizing machine learning-based QSAR model to overcome standalone consensus docking limitation in beta-lactamase inhibitors screening: a proof-of-concept study
In virtual drug screening, consensus docking is a standard in-silico approach consisting of a combined result from optimized docking experiments, a minimum of two results combination. Therefore, consensus docking is subjected to a lower success rate than the best docking method due to its mathematical nature, an unavoidable limitation. This study aims to overcome this drawback via random forest, an ensemble machine learning model. First, in vitro beta-lactamase inhibitory screening was performed using an in-house chemical library. The in vitro results were later used as a validation. Consequently, we optimized docking protocols for AutoDock Vina and DOCK6 programs. With an appropriate scoring function, we found that DOCK6 could identify up to 70% of all active molecules, double the inappropriate. Further consensus analysis reduced the success rate to 50%. Simultaneously, a false positive rate was down to 16%, which was experimentally favorable for a drug search. Finally, we trained two quantitative structure-activity relationship (QSAR) models using logistic regression as a reference model and a random forest as a test model. After combining consensus docking results, random forest-based QSAR outperformed a logistic regression by restoring the success rate to 70% and maintaining a low false positive rate of around 21%. In conclusion, this study demonstrated the benefit of using a random forest (machine learning)-based QSAR model to overcome a standard consensus docking limitation in beta-lactamase inhibitor search as a proof-of-concept.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.