E. S. Lutskin, M. Yu. Shikhovtsev, Ye. V. Molozhnikova, V. A. Obolkin, O. I. Berdashkinova, T. V. Khodzher
{"title":"2022-2023 年利斯特维扬卡监测站(南贝加尔湖地区)大气空气和降水中的汞含量","authors":"E. S. Lutskin, M. Yu. Shikhovtsev, Ye. V. Molozhnikova, V. A. Obolkin, O. I. Berdashkinova, T. V. Khodzher","doi":"10.1134/S102485602470088X","DOIUrl":null,"url":null,"abstract":"<p>Gaseous elemental mercury (GEM) is the predominant form of mercury in the atmosphere. As a result of deposition, it enters terrestrial and aquatic ecosystems, where it is further transformed into the ecotoxicant methylmercury. The work studies GEM in atmospheric air and total mercury in atmospheric precipitation in the Southern Baikal region. Sampling was carried out at Listvyanka monitoring station (51.9° N, 104.4° E) in 2022–2023. The concentrations of mercury in air was measured with a RA-915AM mercury gas analyzer (St. Petersburg, Russia); the concentration of total mercury in precipitation was determined by PND F 14.1:2:4.271-2012 method A (permanganate mineralization) technique. The measured concentrations were statistically analyzed. During the period under study, the concentration of GEM in atmospheric air averaged 1.61 ng/m<sup>3</sup>; the pair correlation coefficient was 0.47 between Hg<sup>0</sup> and sulfur dioxide (SO<sub>2</sub>) and 0.44 between Hg<sup>0</sup> and nitrogen dioxide (NO<sub>2</sub>); a strong positive correlation (>0.9) between Hg<sup>0</sup>, SO<sub>2</sub>, and NO<sub>2</sub> was found in 12 cases. For each episode of mercury concentration above 2.0 ng/m<sup>3</sup>, back trajectories of air masses were calculated using the HYSPLIT model. The trajectory analysis also confirmed our assumption of a common type of sources of mercury and trace gases. The weighted average content of total mercury in precipitation is 44 ng/L, the median value is 29 ng/L, and the maximum is 282 ng/L. The results supplement the existing ideas about mercury content in the atmosphere of the Southern Baikal region and show the mercury content in atmospheric precipitation on the Baikal shore to be comparable with the results obtained in urban agglomerations of Nepal, Canada, Korea, and China despite the significant distance of the measurement site from large cities.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 5","pages":"656 - 665"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mercury in Atmospheric Air and Precipitation at the Monitoring Station Listvyanka (Southern Baikal Region) in 2022–2023\",\"authors\":\"E. S. Lutskin, M. Yu. Shikhovtsev, Ye. V. Molozhnikova, V. A. Obolkin, O. I. Berdashkinova, T. V. Khodzher\",\"doi\":\"10.1134/S102485602470088X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gaseous elemental mercury (GEM) is the predominant form of mercury in the atmosphere. As a result of deposition, it enters terrestrial and aquatic ecosystems, where it is further transformed into the ecotoxicant methylmercury. The work studies GEM in atmospheric air and total mercury in atmospheric precipitation in the Southern Baikal region. Sampling was carried out at Listvyanka monitoring station (51.9° N, 104.4° E) in 2022–2023. The concentrations of mercury in air was measured with a RA-915AM mercury gas analyzer (St. Petersburg, Russia); the concentration of total mercury in precipitation was determined by PND F 14.1:2:4.271-2012 method A (permanganate mineralization) technique. The measured concentrations were statistically analyzed. During the period under study, the concentration of GEM in atmospheric air averaged 1.61 ng/m<sup>3</sup>; the pair correlation coefficient was 0.47 between Hg<sup>0</sup> and sulfur dioxide (SO<sub>2</sub>) and 0.44 between Hg<sup>0</sup> and nitrogen dioxide (NO<sub>2</sub>); a strong positive correlation (>0.9) between Hg<sup>0</sup>, SO<sub>2</sub>, and NO<sub>2</sub> was found in 12 cases. For each episode of mercury concentration above 2.0 ng/m<sup>3</sup>, back trajectories of air masses were calculated using the HYSPLIT model. The trajectory analysis also confirmed our assumption of a common type of sources of mercury and trace gases. The weighted average content of total mercury in precipitation is 44 ng/L, the median value is 29 ng/L, and the maximum is 282 ng/L. The results supplement the existing ideas about mercury content in the atmosphere of the Southern Baikal region and show the mercury content in atmospheric precipitation on the Baikal shore to be comparable with the results obtained in urban agglomerations of Nepal, Canada, Korea, and China despite the significant distance of the measurement site from large cities.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":\"37 5\",\"pages\":\"656 - 665\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S102485602470088X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S102485602470088X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Mercury in Atmospheric Air and Precipitation at the Monitoring Station Listvyanka (Southern Baikal Region) in 2022–2023
Gaseous elemental mercury (GEM) is the predominant form of mercury in the atmosphere. As a result of deposition, it enters terrestrial and aquatic ecosystems, where it is further transformed into the ecotoxicant methylmercury. The work studies GEM in atmospheric air and total mercury in atmospheric precipitation in the Southern Baikal region. Sampling was carried out at Listvyanka monitoring station (51.9° N, 104.4° E) in 2022–2023. The concentrations of mercury in air was measured with a RA-915AM mercury gas analyzer (St. Petersburg, Russia); the concentration of total mercury in precipitation was determined by PND F 14.1:2:4.271-2012 method A (permanganate mineralization) technique. The measured concentrations were statistically analyzed. During the period under study, the concentration of GEM in atmospheric air averaged 1.61 ng/m3; the pair correlation coefficient was 0.47 between Hg0 and sulfur dioxide (SO2) and 0.44 between Hg0 and nitrogen dioxide (NO2); a strong positive correlation (>0.9) between Hg0, SO2, and NO2 was found in 12 cases. For each episode of mercury concentration above 2.0 ng/m3, back trajectories of air masses were calculated using the HYSPLIT model. The trajectory analysis also confirmed our assumption of a common type of sources of mercury and trace gases. The weighted average content of total mercury in precipitation is 44 ng/L, the median value is 29 ng/L, and the maximum is 282 ng/L. The results supplement the existing ideas about mercury content in the atmosphere of the Southern Baikal region and show the mercury content in atmospheric precipitation on the Baikal shore to be comparable with the results obtained in urban agglomerations of Nepal, Canada, Korea, and China despite the significant distance of the measurement site from large cities.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.