S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, S. N. Murashko
{"title":"Two-Pulse Laser Fragmentation/Laser-Induced Fluorescence of Organophosphate Aerosol","authors":"S. M. Bobrovnikov, E. V. Gorlov, V. I. Zharkov, S. N. Murashko","doi":"10.1134/S1024856024700982","DOIUrl":null,"url":null,"abstract":"<p>The laser fragmentation/laser-induced fluorescence (LF/LIF) method is well known for its efficiency in detecting complex chemical compounds based on the fluorescence of their characteristic fragments. The method is applied, for example, to measuring the local content of nitrous acid and hydroxyl radicals in the atmosphere, visualization of intermediate stages of combustion processes, remote detection of substances in the gaseous state in the atmosphere and condensed state on surfaces, etc. We present for the first time the results of the experimental study of a possibility of remote excitation of LIF of characteristic photofragments of a substance in an aerosol state in the atmosphere. The organophosphorus compound triethyl phosphate (TEP) was used as the test substance. It has been shown that synchronized two-pulse laser irradiation of TEP aerosol particles and their PO-fragments (phosphorus oxide molecules) makes it possible to increase the efficiency of the LF/LIF process by approximately seven times compared to single-pulse laser exposure. It has been established that formation of PO-fragments of TEP aerosol under the laser irradiation at a wavelength of 266 nm has a decaying exponential character with a characteristic time of 192.6 ± 20.2 ns. In terms of the nature of the time dependence of the formation of photofragments, the results obtained are fundamentally different from similar measurements for other compounds in gaseous and condensed states and motivate further research that will contribute to the development of the LF/LIF method.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 5","pages":"732 - 737"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,激光碎裂/激光诱导荧光(LF/LIF)方法可根据化合物特征碎片的荧光有效检测复杂的化合物。例如,该方法可用于测量大气中当地的亚硝酸和羟基自由基含量、可视化燃烧过程的中间阶段、远程检测大气中的气态物质和表面上的凝结态物质等。我们首次介绍了对大气中气溶胶状态物质的特征光碎片 LIF 进行远程激发的可能性的实验研究结果。试验物质是有机磷化合物磷酸三乙酯(TEP)。研究表明,对 TEP 气溶胶粒子及其 PO 碎片(氧化磷分子)进行同步双脉冲激光照射,可使 LF/LIF 过程的效率比单脉冲激光照射提高约七倍。已经证实,在波长为 266 nm 的激光照射下,TEP 气溶胶 PO 碎片的形成具有指数衰减的特征,其特征时间为 192.6 ± 20.2 ns。从光碎片形成的时间依赖性来看,所获得的结果与对其他气态和凝聚态化合物的类似测量结果有着本质区别,这也促使我们进一步开展研究,为 LF/LIF 方法的发展做出贡献。
Two-Pulse Laser Fragmentation/Laser-Induced Fluorescence of Organophosphate Aerosol
The laser fragmentation/laser-induced fluorescence (LF/LIF) method is well known for its efficiency in detecting complex chemical compounds based on the fluorescence of their characteristic fragments. The method is applied, for example, to measuring the local content of nitrous acid and hydroxyl radicals in the atmosphere, visualization of intermediate stages of combustion processes, remote detection of substances in the gaseous state in the atmosphere and condensed state on surfaces, etc. We present for the first time the results of the experimental study of a possibility of remote excitation of LIF of characteristic photofragments of a substance in an aerosol state in the atmosphere. The organophosphorus compound triethyl phosphate (TEP) was used as the test substance. It has been shown that synchronized two-pulse laser irradiation of TEP aerosol particles and their PO-fragments (phosphorus oxide molecules) makes it possible to increase the efficiency of the LF/LIF process by approximately seven times compared to single-pulse laser exposure. It has been established that formation of PO-fragments of TEP aerosol under the laser irradiation at a wavelength of 266 nm has a decaying exponential character with a characteristic time of 192.6 ± 20.2 ns. In terms of the nature of the time dependence of the formation of photofragments, the results obtained are fundamentally different from similar measurements for other compounds in gaseous and condensed states and motivate further research that will contribute to the development of the LF/LIF method.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.