感应功率传输纳米晶合金的各向异性表征

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Alexander K. Bailey;Wenting Zhang;Seho Kim;Grant A. Covic
{"title":"感应功率传输纳米晶合金的各向异性表征","authors":"Alexander K. Bailey;Wenting Zhang;Seho Kim;Grant A. Covic","doi":"10.1109/OJPEL.2024.3510641","DOIUrl":null,"url":null,"abstract":"Nanocrystalline alloys are of interest in inductive power transfer (IPT) due to their higher saturation limits, permeability, and thermal conductivity compared to conventional Mn–Zn ferrites. However, due to the higher electrical conductivity of nanocrystalline alloys, they have significant eddy current losses. This article demonstrates a core loss measurement method that considers the anisotropic behavior of fractured and laminated nanocrystalline ribbons. The proposed method uses a Maxwell coil to generate a uniform magnetic field, while samples of nanocrystalline ribbon are mechanically rotated within the magnetic field. Core loss is then measured using a hybrid calorimetric method that combines steady-state and transient measurements, enabling quick and accurate acquisition. The measured core loss of three different nanocrystalline ribbon samples is compared at \n<inline-formula><tex-math>$85 \\,\\rm{k}\\rm{Hz}$</tex-math></inline-formula>\n for IPT applications. Finally, a modified Steinmetz equation dependent on the magnetic flux angle is proposed.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"5 ","pages":"1830-1841"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772399","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Characterization of Nanocrystalline Alloys for Inductive Power Transfer\",\"authors\":\"Alexander K. Bailey;Wenting Zhang;Seho Kim;Grant A. Covic\",\"doi\":\"10.1109/OJPEL.2024.3510641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocrystalline alloys are of interest in inductive power transfer (IPT) due to their higher saturation limits, permeability, and thermal conductivity compared to conventional Mn–Zn ferrites. However, due to the higher electrical conductivity of nanocrystalline alloys, they have significant eddy current losses. This article demonstrates a core loss measurement method that considers the anisotropic behavior of fractured and laminated nanocrystalline ribbons. The proposed method uses a Maxwell coil to generate a uniform magnetic field, while samples of nanocrystalline ribbon are mechanically rotated within the magnetic field. Core loss is then measured using a hybrid calorimetric method that combines steady-state and transient measurements, enabling quick and accurate acquisition. The measured core loss of three different nanocrystalline ribbon samples is compared at \\n<inline-formula><tex-math>$85 \\\\,\\\\rm{k}\\\\rm{Hz}$</tex-math></inline-formula>\\n for IPT applications. Finally, a modified Steinmetz equation dependent on the magnetic flux angle is proposed.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":\"5 \",\"pages\":\"1830-1841\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772399\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772399/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772399/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

与传统的锰锌铁氧体相比,纳米晶合金具有更高的饱和极限、磁导率和热导率,因此在电感式功率传输(IPT)中备受关注。然而,由于纳米晶合金具有更高的导电性,它们会产生显著的涡流损耗。本文展示了一种铁芯损耗测量方法,该方法考虑了断裂和层叠纳米晶带的各向异性行为。该方法使用麦克斯韦线圈产生均匀磁场,纳米晶带样品在磁场中机械旋转。然后使用混合量热法测量磁芯损耗,该方法结合了稳态测量和瞬态测量,能够快速准确地采集数据。比较了三种不同纳米晶带样品在 85 \\rm{k}\rm{Hz}$ 的 IPT 应用条件下测得的磁芯损耗。最后,还提出了一个取决于磁通角的修正斯坦梅茨方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic Characterization of Nanocrystalline Alloys for Inductive Power Transfer
Nanocrystalline alloys are of interest in inductive power transfer (IPT) due to their higher saturation limits, permeability, and thermal conductivity compared to conventional Mn–Zn ferrites. However, due to the higher electrical conductivity of nanocrystalline alloys, they have significant eddy current losses. This article demonstrates a core loss measurement method that considers the anisotropic behavior of fractured and laminated nanocrystalline ribbons. The proposed method uses a Maxwell coil to generate a uniform magnetic field, while samples of nanocrystalline ribbon are mechanically rotated within the magnetic field. Core loss is then measured using a hybrid calorimetric method that combines steady-state and transient measurements, enabling quick and accurate acquisition. The measured core loss of three different nanocrystalline ribbon samples is compared at $85 \,\rm{k}\rm{Hz}$ for IPT applications. Finally, a modified Steinmetz equation dependent on the magnetic flux angle is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信