Alexander Benvenuti;Brendan Bialy;Miriam Dennis;Matthew Hale
{"title":"Guaranteed Feasibility in Differentially Private Linearly Constrained Convex Optimization","authors":"Alexander Benvenuti;Brendan Bialy;Miriam Dennis;Matthew Hale","doi":"10.1109/LCSYS.2024.3513232","DOIUrl":null,"url":null,"abstract":"Convex programming with linear constraints plays an important role in the operation of a number of everyday systems. However, absent any additional protections, revealing or acting on the solutions to such problems may reveal information about their constraints, which can be sensitive. Therefore, in this letter, we introduce a method to keep linear constraints private when solving a convex program. First, we prove that this method is differentially private and always generates a feasible optimization problem (i.e., one whose solution exists). Then we show that the solution to the privatized problem also satisfies the original, non-private constraints. Next, we bound the expected loss in performance from privacy, which is measured by comparing the cost with privacy to that without privacy. Simulation results apply this framework to constrained policy synthesis in a Markov decision process, and they show that a typical privacy implementation induces only an approximately 9% loss in solution quality.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2745-2750"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10783025/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Guaranteed Feasibility in Differentially Private Linearly Constrained Convex Optimization
Convex programming with linear constraints plays an important role in the operation of a number of everyday systems. However, absent any additional protections, revealing or acting on the solutions to such problems may reveal information about their constraints, which can be sensitive. Therefore, in this letter, we introduce a method to keep linear constraints private when solving a convex program. First, we prove that this method is differentially private and always generates a feasible optimization problem (i.e., one whose solution exists). Then we show that the solution to the privatized problem also satisfies the original, non-private constraints. Next, we bound the expected loss in performance from privacy, which is measured by comparing the cost with privacy to that without privacy. Simulation results apply this framework to constrained policy synthesis in a Markov decision process, and they show that a typical privacy implementation induces only an approximately 9% loss in solution quality.