惯性传感器噪声随机模型的极大似然辨识

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shida Ye;Yaakov Bar-Shalom;Peter Willett;Ahmed S. Zaki
{"title":"惯性传感器噪声随机模型的极大似然辨识","authors":"Shida Ye;Yaakov Bar-Shalom;Peter Willett;Ahmed S. Zaki","doi":"10.1109/JSEN.2024.3487542","DOIUrl":null,"url":null,"abstract":"This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 24","pages":"41021-41028"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises\",\"authors\":\"Shida Ye;Yaakov Bar-Shalom;Peter Willett;Ahmed S. Zaki\",\"doi\":\"10.1109/JSEN.2024.3487542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 24\",\"pages\":\"41021-41028\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10742285/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10742285/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文将极大似然估计(MLE)应用于惯性传感器漂移状态空间模型的辨识。所考虑的离散时间标量状态是一阶高斯-马尔可夫过程或维纳过程(WP),这两者都是惯性传感器噪声模型中常见的噪声项。该测量模型包含一个加性白测量噪声。在建立最大似然函数时,在稳态卡尔曼滤波(KF)框架内推导似然函数。所得的对数似然函数(LLF)可以表示为测量值的二次函数。这允许LLF的显式表达,促进cram - rao下限(CRLB)的评估,从而测试并最终确认ML估计器的统计效率,即最优性。仿真结果表明了该估计器的最佳性能,并在实际传感器数据中的应用表明,该估计器在噪声建模方面优于Allan方差(AV)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises
This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信