基于 BLRFC 方案的独立振幅/相位操纵元面及其在具有边音抑制功能的宽带金属天线中的应用

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiao-Han Yang;Zhi-Yuan Zong;Wen Wu;Da-Gang Fang
{"title":"基于 BLRFC 方案的独立振幅/相位操纵元面及其在具有边音抑制功能的宽带金属天线中的应用","authors":"Xiao-Han Yang;Zhi-Yuan Zong;Wen Wu;Da-Gang Fang","doi":"10.1109/TAP.2024.3481638","DOIUrl":null,"url":null,"abstract":"In this work, based on the scheme using the antenna array back-loaded radio frequency circuit (BLRFC) to realize circuit-level manipulation, a novel design of amplitude/phase-manipulation metasurface (A/PMMS) is proposed. The BLRFC has been used to manipulate transmissive electromagnetic (EM) waves by loading control circuits between the grounds of two antenna arrays. Based on the proposed A/PMMS, the amplitude and phase of EM waves can be manipulated independently. The phase manipulation is realized by tuning the length of the transmission line. Also, the amplitude manipulation is realized by tuning the characteristic impedance of the transmission line to change the match between the circuit and the antennas. Furthermore, a wideband metalens antenna with sidelobe suppression is designed, fabricated, and measured based on the proposed scheme. The sidelobe suppression is achieved by tuning the amplitude distribution of the metalens aperture to realize the Taylor distribution. Measurements show that the proposed metalens antenna achieves the 3-dB gain-bandwidth of 35.8% (8–11.5 GHz). At 9 GHz, the first and the second sidelobe levels (SLLs) in the E- and H-planes are suppressed lower than -30 dB, and the realized gain is 23.6 dBi. The measured performance verifies the flexibility and the superiority of the novel scheme. In addition, the proposed scheme can be easily extended to the dual-polarized design. By using dual-polarized antennas, and loading circuits on the channel of each polarization, a dual-polarized A/PMMS is designed. The proposed dual-polarized A/PMMS can independently manipulate dual-polarized EM waves. To the authors’ best knowledge, this type of A/PMMS has not been reported.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"72 12","pages":"9221-9228"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Independent Amplitude/Phase-Manipulation Metasurface Based on BLRFC Scheme and Its Application to Wideband Metalens Antenna With Sidelobe Suppression\",\"authors\":\"Xiao-Han Yang;Zhi-Yuan Zong;Wen Wu;Da-Gang Fang\",\"doi\":\"10.1109/TAP.2024.3481638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, based on the scheme using the antenna array back-loaded radio frequency circuit (BLRFC) to realize circuit-level manipulation, a novel design of amplitude/phase-manipulation metasurface (A/PMMS) is proposed. The BLRFC has been used to manipulate transmissive electromagnetic (EM) waves by loading control circuits between the grounds of two antenna arrays. Based on the proposed A/PMMS, the amplitude and phase of EM waves can be manipulated independently. The phase manipulation is realized by tuning the length of the transmission line. Also, the amplitude manipulation is realized by tuning the characteristic impedance of the transmission line to change the match between the circuit and the antennas. Furthermore, a wideband metalens antenna with sidelobe suppression is designed, fabricated, and measured based on the proposed scheme. The sidelobe suppression is achieved by tuning the amplitude distribution of the metalens aperture to realize the Taylor distribution. Measurements show that the proposed metalens antenna achieves the 3-dB gain-bandwidth of 35.8% (8–11.5 GHz). At 9 GHz, the first and the second sidelobe levels (SLLs) in the E- and H-planes are suppressed lower than -30 dB, and the realized gain is 23.6 dBi. The measured performance verifies the flexibility and the superiority of the novel scheme. In addition, the proposed scheme can be easily extended to the dual-polarized design. By using dual-polarized antennas, and loading circuits on the channel of each polarization, a dual-polarized A/PMMS is designed. The proposed dual-polarized A/PMMS can independently manipulate dual-polarized EM waves. To the authors’ best knowledge, this type of A/PMMS has not been reported.\",\"PeriodicalId\":13102,\"journal\":{\"name\":\"IEEE Transactions on Antennas and Propagation\",\"volume\":\"72 12\",\"pages\":\"9221-9228\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Antennas and Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10729706/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10729706/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文在利用天线阵列背载射频电路(BLRFC)实现电路级操纵的基础上,提出了一种新的幅度/相位操纵超表面(a /PMMS)设计方案。BLRFC已被用于通过在两个天线阵列的接地之间加载控制电路来操纵发射电磁波。基于所提出的A/PMMS,可以对电磁波的幅值和相位进行独立控制。相位控制是通过调整传输线的长度来实现的。另外,通过调整传输线的特性阻抗来改变电路与天线的匹配度,从而实现幅度控制。在此基础上,设计、制作并测量了带副瓣抑制的宽带超构天线。通过调整超透镜孔径的振幅分布,实现泰勒分布,实现副瓣抑制。测量结果表明,该天线的3db增益带宽为35.8% (8-11.5 GHz)。在9 GHz时,E面和h面第一和第二副瓣电平(sll)被抑制在-30 dB以下,实现增益为23.6 dBi。实测性能验证了该方案的灵活性和优越性。此外,该方案可以很容易地扩展到双极化设计中。采用双极化天线,在每个极化信道上加载电路,设计了双极化a /PMMS。所提出的双极化A/PMMS可以独立处理双极化电磁波。据作者所知,这种类型的A/PMMS尚未被报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent Amplitude/Phase-Manipulation Metasurface Based on BLRFC Scheme and Its Application to Wideband Metalens Antenna With Sidelobe Suppression
In this work, based on the scheme using the antenna array back-loaded radio frequency circuit (BLRFC) to realize circuit-level manipulation, a novel design of amplitude/phase-manipulation metasurface (A/PMMS) is proposed. The BLRFC has been used to manipulate transmissive electromagnetic (EM) waves by loading control circuits between the grounds of two antenna arrays. Based on the proposed A/PMMS, the amplitude and phase of EM waves can be manipulated independently. The phase manipulation is realized by tuning the length of the transmission line. Also, the amplitude manipulation is realized by tuning the characteristic impedance of the transmission line to change the match between the circuit and the antennas. Furthermore, a wideband metalens antenna with sidelobe suppression is designed, fabricated, and measured based on the proposed scheme. The sidelobe suppression is achieved by tuning the amplitude distribution of the metalens aperture to realize the Taylor distribution. Measurements show that the proposed metalens antenna achieves the 3-dB gain-bandwidth of 35.8% (8–11.5 GHz). At 9 GHz, the first and the second sidelobe levels (SLLs) in the E- and H-planes are suppressed lower than -30 dB, and the realized gain is 23.6 dBi. The measured performance verifies the flexibility and the superiority of the novel scheme. In addition, the proposed scheme can be easily extended to the dual-polarized design. By using dual-polarized antennas, and loading circuits on the channel of each polarization, a dual-polarized A/PMMS is designed. The proposed dual-polarized A/PMMS can independently manipulate dual-polarized EM waves. To the authors’ best knowledge, this type of A/PMMS has not been reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信