{"title":"基于物理机制的神经网络电力系统动态安全评估","authors":"Guozheng Wang;Jianbo Guo;Shicong Ma;Kui Luo;Xi Zhang;Qinglai Guo;Shixiong Fan;Tiezhu Wang;Weilin Hou","doi":"10.17775/CSEEJPES.2022.08800","DOIUrl":null,"url":null,"abstract":"Data-driven artificial intelligence technologies have emerged as increasingly fascinating tools for assessing power system security. However, their inherent mechanism of inexplicability and unreliability now limits their scalability in power systems. To address this problem, this paper proposes a neural network design method empowered by physical mechanisms for power system security assessment. It incorporates geometric characteristics of dynamic security regions into the network training process and constructs connections between network structure and system's unstable mode, which can perform security assessment with a neural network efficiently while ensuring physical plausibility. Furthermore, a credibility evaluation mechanism is established to ensure credibility of neural network predictions and reduce misclassifications. Finally, effectiveness of the proposed method is verified on test systems. Methods and considerations in building a neural network with interpretable structures and credible predictions can provide a reference for machine intelligence applied in other industrial systems.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 6","pages":"2296-2307"},"PeriodicalIF":6.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10165678","citationCount":"0","resultStr":"{\"title\":\"Physical Mechanism Enabled Neural Network for Power System Dynamic Security Assessment\",\"authors\":\"Guozheng Wang;Jianbo Guo;Shicong Ma;Kui Luo;Xi Zhang;Qinglai Guo;Shixiong Fan;Tiezhu Wang;Weilin Hou\",\"doi\":\"10.17775/CSEEJPES.2022.08800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven artificial intelligence technologies have emerged as increasingly fascinating tools for assessing power system security. However, their inherent mechanism of inexplicability and unreliability now limits their scalability in power systems. To address this problem, this paper proposes a neural network design method empowered by physical mechanisms for power system security assessment. It incorporates geometric characteristics of dynamic security regions into the network training process and constructs connections between network structure and system's unstable mode, which can perform security assessment with a neural network efficiently while ensuring physical plausibility. Furthermore, a credibility evaluation mechanism is established to ensure credibility of neural network predictions and reduce misclassifications. Finally, effectiveness of the proposed method is verified on test systems. Methods and considerations in building a neural network with interpretable structures and credible predictions can provide a reference for machine intelligence applied in other industrial systems.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"10 6\",\"pages\":\"2296-2307\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10165678\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10165678/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10165678/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Physical Mechanism Enabled Neural Network for Power System Dynamic Security Assessment
Data-driven artificial intelligence technologies have emerged as increasingly fascinating tools for assessing power system security. However, their inherent mechanism of inexplicability and unreliability now limits their scalability in power systems. To address this problem, this paper proposes a neural network design method empowered by physical mechanisms for power system security assessment. It incorporates geometric characteristics of dynamic security regions into the network training process and constructs connections between network structure and system's unstable mode, which can perform security assessment with a neural network efficiently while ensuring physical plausibility. Furthermore, a credibility evaluation mechanism is established to ensure credibility of neural network predictions and reduce misclassifications. Finally, effectiveness of the proposed method is verified on test systems. Methods and considerations in building a neural network with interpretable structures and credible predictions can provide a reference for machine intelligence applied in other industrial systems.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.