IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Shan Wang, Long Li, Ming Jiang, Kaixin Zhao, Dongyuan He, Xiaoguang Li, Zheng Wang*, Yingcheng Wang, Fangzhi Peng and Zhihui Shao*, 
{"title":"One-Step Construction of Atropisomers Bearing 1,5-Central and Axial Chirality via Catalytic Diastereo- and Atroposelective Remote Desymmetrizing Alkynylation","authors":"Shan Wang,&nbsp;Long Li,&nbsp;Ming Jiang,&nbsp;Kaixin Zhao,&nbsp;Dongyuan He,&nbsp;Xiaoguang Li,&nbsp;Zheng Wang*,&nbsp;Yingcheng Wang,&nbsp;Fangzhi Peng and Zhihui Shao*,&nbsp;","doi":"10.1021/acscatal.4c0633210.1021/acscatal.4c06332","DOIUrl":null,"url":null,"abstract":"<p >Catalytic asymmetric construction of atropisomers with multiple stereogenic elements has recently become an emerging area. However, general methods that produced atropisomers bearing remote 1,5-axial and central chirality efficiently and stereoselectively are scarce yet highly challenging. We herein report a catalytic diastereo- and atroposelective remote desymmetrizing alkynylation of axially prochiral dialkynes with <i>ortho</i>-quinone methides (<i>o</i>-QMs), furnishing atropisomers bearing 1,5-remote centrally and axially stereogenic elements. The remote control of prochiral axis far from the reaction site could be simultaneously achieved during the stereoselective C(sp<sup>3</sup>)–C(sp) bond-forming process to generate a stereogenic center. In addition, a kinetic resolution of axially racemic alkynes via diastereo- and atroposelective remote alkynylation with <i>o</i>-QMs has been developed, further enriching structural diversity of atropisomers bearing 1,5-central and axial chirality. The present method expands the chemical space of atropisomeric molecules bearing multiple chiral elements by facile downstream diversification of C–C triple bonds. Finally, the alkynylation of <i>o</i>-QMs can also be applied for the construction of chiral motifs bearing 1,9- and 1,10-stereogenic centers.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 24","pages":"18872–18883 18872–18883"},"PeriodicalIF":11.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c06332","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近,催化不对称构建具有多个立体成因的异构体已成为一个新兴领域。然而,能够高效、立体选择性地生产出具有远端 1,5 轴和中心手性的异构体的通用方法却非常稀少,而且极具挑战性。我们在此报告了一种催化非对映和对映选择性的轴向亲手性二炔与正醌甲酰胺(o-QMs)的远程非对称炔化反应,从而产生了具有 1,5- 远程中心和轴向立体性的异构体。在立体选择性 C(sp3)-C(sp)键形成过程中,可同时实现对远离反应位点的手性轴的远程控制,以生成一个立体中心。此外,还开发出了一种通过 o-QMs 的非对映和对映选择性远程炔化作用对轴向外消旋炔烃进行动力学解析的方法,进一步丰富了具有 1,5 中心和轴向手性的对位异构体的结构多样性。本方法通过 C-C 三键的下游多样化,拓展了含有多种手性元素的异构体分子的化学空间。最后,o-QMs 的炔化反应也可用于构建含有 1,9 和 1,10 立体中心的手性图案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One-Step Construction of Atropisomers Bearing 1,5-Central and Axial Chirality via Catalytic Diastereo- and Atroposelective Remote Desymmetrizing Alkynylation

One-Step Construction of Atropisomers Bearing 1,5-Central and Axial Chirality via Catalytic Diastereo- and Atroposelective Remote Desymmetrizing Alkynylation

Catalytic asymmetric construction of atropisomers with multiple stereogenic elements has recently become an emerging area. However, general methods that produced atropisomers bearing remote 1,5-axial and central chirality efficiently and stereoselectively are scarce yet highly challenging. We herein report a catalytic diastereo- and atroposelective remote desymmetrizing alkynylation of axially prochiral dialkynes with ortho-quinone methides (o-QMs), furnishing atropisomers bearing 1,5-remote centrally and axially stereogenic elements. The remote control of prochiral axis far from the reaction site could be simultaneously achieved during the stereoselective C(sp3)–C(sp) bond-forming process to generate a stereogenic center. In addition, a kinetic resolution of axially racemic alkynes via diastereo- and atroposelective remote alkynylation with o-QMs has been developed, further enriching structural diversity of atropisomers bearing 1,5-central and axial chirality. The present method expands the chemical space of atropisomeric molecules bearing multiple chiral elements by facile downstream diversification of C–C triple bonds. Finally, the alkynylation of o-QMs can also be applied for the construction of chiral motifs bearing 1,9- and 1,10-stereogenic centers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信