Ezgi Gurgenc, Muhammed Gur, Hakan Cosanay, Turan Gurgenc, Hakan F. Oztop
{"title":"Effects of position of semi-circular body on melting of a novel B4C/RT44HC PCM nanocomposite in a closed space","authors":"Ezgi Gurgenc, Muhammed Gur, Hakan Cosanay, Turan Gurgenc, Hakan F. Oztop","doi":"10.1016/j.csite.2024.105628","DOIUrl":null,"url":null,"abstract":"This study focuses on optimizing the thermal performance of a novel Boron Carbide (B<ce:inf loc=\"post\">4</ce:inf>C) enhanced RT44HC phase change material (PCM) nanocomposite by analyzing the effects of different semi-circular partition placements within a closed cavity. The primary objective is to determine how the position of these adiabatic bodies influences the melting behavior, thermal conductivity, and energy storage capacity of the PCM. Through detailed computational modeling using the finite volume method and experimental validation, the research reveals that incorporating B<ce:inf loc=\"post\">4</ce:inf>C nanoparticles significantly improves thermal performance, achieving up to a 69.65 % increase in thermal conductivity and a 19.68 % enhancement in energy storage capacity compared to pure PCM. The findings contribute to the field of advanced thermal energy storage and management by presenting a robust strategy for optimizing heat transfer in PCM systems, with potential applications in sustainable building design, electronic cooling, and energy-efficient technologies.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"24 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105628","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Effects of position of semi-circular body on melting of a novel B4C/RT44HC PCM nanocomposite in a closed space
This study focuses on optimizing the thermal performance of a novel Boron Carbide (B4C) enhanced RT44HC phase change material (PCM) nanocomposite by analyzing the effects of different semi-circular partition placements within a closed cavity. The primary objective is to determine how the position of these adiabatic bodies influences the melting behavior, thermal conductivity, and energy storage capacity of the PCM. Through detailed computational modeling using the finite volume method and experimental validation, the research reveals that incorporating B4C nanoparticles significantly improves thermal performance, achieving up to a 69.65 % increase in thermal conductivity and a 19.68 % enhancement in energy storage capacity compared to pure PCM. The findings contribute to the field of advanced thermal energy storage and management by presenting a robust strategy for optimizing heat transfer in PCM systems, with potential applications in sustainable building design, electronic cooling, and energy-efficient technologies.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.