在共轭聚合物中引入非共价相互作用以增强主链共面性和界面聚集以提高载流子迁移率

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yiting Liu, Rui Chen, Junhang Li, Xinyu Liu, Hongxiang Li, Yanchun Han
{"title":"在共轭聚合物中引入非共价相互作用以增强主链共面性和界面聚集以提高载流子迁移率","authors":"Yiting Liu, Rui Chen, Junhang Li, Xinyu Liu, Hongxiang Li, Yanchun Han","doi":"10.1021/acsami.4c16351","DOIUrl":null,"url":null,"abstract":"In organic field-effect transistors (OFETs), the high carrier mobility of conjugated polymers (CPs) is significantly influenced by the maintenance of excellent coplanarity and aggregation, especially at the interface between the organic semiconductor and dielectric layer. Unfortunately, CPs typically exhibit poor coplanarity due to the single bond rotations between donor and acceptor units. Furthermore, there is relatively little research on the coplanarity of CPs at the interface. Herein, we propose a strategy of introducing noncovalent interactions to enhance the coplanarity of the backbone and promote the aggregation of the polymer at the interface, which should lead to significant enhancements in carrier mobility. The idea is proved by incorporating different volume fractions of oleic acid (OA) into poly(indacenodithiophene-<i>co</i>-benzothiadiazole) (IDTBT). OA can form hydrogen bonds, which has been verified by Fourier transform infrared spectroscopy (FT-IR). OA promotes the migration of IDTBT toward the interface, thereby enhancing aggregation, as verified by film-depth-dependent light absorption spectroscopy (FLAS) and contact angle (CA) experiments. The results from film-depth-dependent Raman spectroscopy (FRS), two-dimensional grazing incidence wide-angle X-ray scattering (2D GIWAXS), atomic force microscopy (AFM), and density functional theory (DFT) calculations suggest that films treated with OA exhibit enhanced backbone coplanarity and aggregation at the interface, resulting in an increase in carrier mobility to 4.24 ± 0.11 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> with the addition of OA.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"110 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing Noncovalent Interactions in Conjugated Polymers to Enhance Backbone Coplanarity and Aggregation at the Interface to Improve Carrier Mobility\",\"authors\":\"Yiting Liu, Rui Chen, Junhang Li, Xinyu Liu, Hongxiang Li, Yanchun Han\",\"doi\":\"10.1021/acsami.4c16351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In organic field-effect transistors (OFETs), the high carrier mobility of conjugated polymers (CPs) is significantly influenced by the maintenance of excellent coplanarity and aggregation, especially at the interface between the organic semiconductor and dielectric layer. Unfortunately, CPs typically exhibit poor coplanarity due to the single bond rotations between donor and acceptor units. Furthermore, there is relatively little research on the coplanarity of CPs at the interface. Herein, we propose a strategy of introducing noncovalent interactions to enhance the coplanarity of the backbone and promote the aggregation of the polymer at the interface, which should lead to significant enhancements in carrier mobility. The idea is proved by incorporating different volume fractions of oleic acid (OA) into poly(indacenodithiophene-<i>co</i>-benzothiadiazole) (IDTBT). OA can form hydrogen bonds, which has been verified by Fourier transform infrared spectroscopy (FT-IR). OA promotes the migration of IDTBT toward the interface, thereby enhancing aggregation, as verified by film-depth-dependent light absorption spectroscopy (FLAS) and contact angle (CA) experiments. The results from film-depth-dependent Raman spectroscopy (FRS), two-dimensional grazing incidence wide-angle X-ray scattering (2D GIWAXS), atomic force microscopy (AFM), and density functional theory (DFT) calculations suggest that films treated with OA exhibit enhanced backbone coplanarity and aggregation at the interface, resulting in an increase in carrier mobility to 4.24 ± 0.11 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> with the addition of OA.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c16351\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16351","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在有机场效应晶体管(ofet)中,共轭聚合物(CPs)的高载流子迁移率受到保持优异的共面性和聚集性的显著影响,特别是在有机半导体和介电层之间的界面处。不幸的是,由于供体和受体之间的单键旋转,CPs通常表现出较差的共平面性。此外,对界面处CPs共平面性的研究相对较少。在此,我们提出了一种引入非共价相互作用的策略,以增强主链的共平面性并促进聚合物在界面处的聚集,这将导致载流子迁移率的显着增强。通过将不同体积分数的油酸(OA)掺入聚吲哚二噻吩-共苯并噻唑(IDTBT)中,证明了这一想法。OA可以形成氢键,这一点已被傅里叶变换红外光谱(FT-IR)证实。薄膜深度依赖光吸收光谱(FLAS)和接触角(CA)实验证实,OA促进IDTBT向界面迁移,从而增强聚集。薄膜深度相关拉曼光谱(FRS)、二维掠入射广角x射线散射(2D GIWAXS)、原子力显微镜(AFM)和密度泛函理论(DFT)计算结果表明,OA处理后的薄膜在界面处表现出增强的骨架共面性和聚集性,导致载流子迁移率增加到4.24±0.11 cm2 V-1 s-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Introducing Noncovalent Interactions in Conjugated Polymers to Enhance Backbone Coplanarity and Aggregation at the Interface to Improve Carrier Mobility

Introducing Noncovalent Interactions in Conjugated Polymers to Enhance Backbone Coplanarity and Aggregation at the Interface to Improve Carrier Mobility
In organic field-effect transistors (OFETs), the high carrier mobility of conjugated polymers (CPs) is significantly influenced by the maintenance of excellent coplanarity and aggregation, especially at the interface between the organic semiconductor and dielectric layer. Unfortunately, CPs typically exhibit poor coplanarity due to the single bond rotations between donor and acceptor units. Furthermore, there is relatively little research on the coplanarity of CPs at the interface. Herein, we propose a strategy of introducing noncovalent interactions to enhance the coplanarity of the backbone and promote the aggregation of the polymer at the interface, which should lead to significant enhancements in carrier mobility. The idea is proved by incorporating different volume fractions of oleic acid (OA) into poly(indacenodithiophene-co-benzothiadiazole) (IDTBT). OA can form hydrogen bonds, which has been verified by Fourier transform infrared spectroscopy (FT-IR). OA promotes the migration of IDTBT toward the interface, thereby enhancing aggregation, as verified by film-depth-dependent light absorption spectroscopy (FLAS) and contact angle (CA) experiments. The results from film-depth-dependent Raman spectroscopy (FRS), two-dimensional grazing incidence wide-angle X-ray scattering (2D GIWAXS), atomic force microscopy (AFM), and density functional theory (DFT) calculations suggest that films treated with OA exhibit enhanced backbone coplanarity and aggregation at the interface, resulting in an increase in carrier mobility to 4.24 ± 0.11 cm2 V–1 s–1 with the addition of OA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信