Jiawei Zhang, Fang Lin, Yijie Xiao, Si-Yu Cen, Bi-Wen Wan, Xuan Li, Yahui Zhao, Yi He, Hai-Xin Yuan, Shenyou Nie
{"title":"Discovery and optimization of 1,2,4-triazole derivatives as novel ferroptosis inhibitors","authors":"Jiawei Zhang, Fang Lin, Yijie Xiao, Si-Yu Cen, Bi-Wen Wan, Xuan Li, Yahui Zhao, Yi He, Hai-Xin Yuan, Shenyou Nie","doi":"10.1016/j.ejmech.2024.117192","DOIUrl":null,"url":null,"abstract":"Ferroptosis is a novel form of regulated cell death characterized by iron-dependent lipid ROS accumulation, which is associated with various diseases, including acute organ injury, neurodegenerative disorders, and cancer. Pharmacological inhibition of ferroptosis has great potential for the treatment of these diseases. However, the clinical translation of many ferroptosis inhibitors is hindered by their inadequate activity or suboptimal pharmacokinetic profiles. In this study, several 1,2,4-triazole derivatives were identified as novel ferroptosis inhibitors through phenotypic screening of our in-house compound library. Among these compounds, <strong>NY-26</strong> was found to significantly inhibit RSL3-induced ferroptosis in 786-O cells with nanomolar level (EC<sub>50</sub> = 62 nM). The antiferroptotic activity of <strong>NY-26</strong> was further validated across multiple cell lines. Mechanistic studies revealed that <strong>NY-26</strong> inhibits ferroptosis through its intrinsic free radical-trapping antioxidant capacity. Additional results demonstrated that the triazole derivatives could effectively ameliorate ferroptosis-related pathological conditions in a mouse model of ConA-induced acute liver injury. Taken together, <strong>NY-26</strong>, tethering a novel 1,2,4-triazole scaffold, could be an effective ferroptosis inhibitor with great therapeutic potential for further investigation.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"14 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117192","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Discovery and optimization of 1,2,4-triazole derivatives as novel ferroptosis inhibitors
Ferroptosis is a novel form of regulated cell death characterized by iron-dependent lipid ROS accumulation, which is associated with various diseases, including acute organ injury, neurodegenerative disorders, and cancer. Pharmacological inhibition of ferroptosis has great potential for the treatment of these diseases. However, the clinical translation of many ferroptosis inhibitors is hindered by their inadequate activity or suboptimal pharmacokinetic profiles. In this study, several 1,2,4-triazole derivatives were identified as novel ferroptosis inhibitors through phenotypic screening of our in-house compound library. Among these compounds, NY-26 was found to significantly inhibit RSL3-induced ferroptosis in 786-O cells with nanomolar level (EC50 = 62 nM). The antiferroptotic activity of NY-26 was further validated across multiple cell lines. Mechanistic studies revealed that NY-26 inhibits ferroptosis through its intrinsic free radical-trapping antioxidant capacity. Additional results demonstrated that the triazole derivatives could effectively ameliorate ferroptosis-related pathological conditions in a mouse model of ConA-induced acute liver injury. Taken together, NY-26, tethering a novel 1,2,4-triazole scaffold, could be an effective ferroptosis inhibitor with great therapeutic potential for further investigation.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.