{"title":"用于级联催化的聚合物修饰细菌","authors":"Andrea Belluati, Nico Bruns","doi":"10.1038/s41929-024-01273-7","DOIUrl":null,"url":null,"abstract":"Polymer/whole-cell hybrid catalysts were created by synthesizing catalytically active polymers from the surface of Escherichia coli cells that recombinantly expressed enzymes. The surface-engineered bacteria allowed for orthogonal tandem catalysis, involving photo- or chemocatalytic steps by the polymers on the cells and biocatalytic steps by the enzymes within the cells.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 12","pages":"1261-1263"},"PeriodicalIF":42.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polymer-decorated bacteria for cascade catalysis\",\"authors\":\"Andrea Belluati, Nico Bruns\",\"doi\":\"10.1038/s41929-024-01273-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer/whole-cell hybrid catalysts were created by synthesizing catalytically active polymers from the surface of Escherichia coli cells that recombinantly expressed enzymes. The surface-engineered bacteria allowed for orthogonal tandem catalysis, involving photo- or chemocatalytic steps by the polymers on the cells and biocatalytic steps by the enzymes within the cells.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"7 12\",\"pages\":\"1261-1263\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01273-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01273-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Polymer/whole-cell hybrid catalysts were created by synthesizing catalytically active polymers from the surface of Escherichia coli cells that recombinantly expressed enzymes. The surface-engineered bacteria allowed for orthogonal tandem catalysis, involving photo- or chemocatalytic steps by the polymers on the cells and biocatalytic steps by the enzymes within the cells.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.