突破自旋禁止限制实现碳点长寿命室温磷光

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zengsheng Guo, Fangzheng Qi, Juan Dong, Jingtian Xue, Yilei Wang, Bo Xu, Guang-Ning Liu, Yiqiang Sun, Cuncheng Li
{"title":"突破自旋禁止限制实现碳点长寿命室温磷光","authors":"Zengsheng Guo, Fangzheng Qi, Juan Dong, Jingtian Xue, Yilei Wang, Bo Xu, Guang-Ning Liu, Yiqiang Sun, Cuncheng Li","doi":"10.1021/acs.nanolett.4c05187","DOIUrl":null,"url":null,"abstract":"Room-temperature phosphorescent (RTP) carbon dots (CDs) demonstrate significant potential applications in the field of information anticounterfeiting due to their excellent optical properties. However, RTP emission of CDs remains significantly limited due to the spin-forbidden properties of triplet exciton transitions. In this work, an in situ nitrogen doping strategy was employed to design and construct strong spin–orbit coupling nitrogen-doped CDs with mesoporous silica with alumina (N-CDs@MS@Al<sub>2</sub>O<sub>3</sub>) RTP composites. Both experimental results and theoretical calculations confirmed that the formation of <sup>1</sup>(n, π*) following the introduction of nitrogen breaks the spin-forbidden restriction from <sup>1</sup>(π, π*) to <sup>3</sup>(π, π*), thereby enhancing spin–orbit coupling, which further promotes intersystem crossing and leads to the effective population of triplet excitons. The designed N-CDs@MS@Al<sub>2</sub>O<sub>3</sub> benefiting from an impressive long lifetime of 3.18 s demonstrates potential application prospects in the field of multilevel information encryption. This work provides a new concept to boost the RTP lifetime of CDs.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"261 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the Spin-Forbidden Restriction to Achieve Long Lifetime Room-Temperature Phosphorescence of Carbon Dots\",\"authors\":\"Zengsheng Guo, Fangzheng Qi, Juan Dong, Jingtian Xue, Yilei Wang, Bo Xu, Guang-Ning Liu, Yiqiang Sun, Cuncheng Li\",\"doi\":\"10.1021/acs.nanolett.4c05187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Room-temperature phosphorescent (RTP) carbon dots (CDs) demonstrate significant potential applications in the field of information anticounterfeiting due to their excellent optical properties. However, RTP emission of CDs remains significantly limited due to the spin-forbidden properties of triplet exciton transitions. In this work, an in situ nitrogen doping strategy was employed to design and construct strong spin–orbit coupling nitrogen-doped CDs with mesoporous silica with alumina (N-CDs@MS@Al<sub>2</sub>O<sub>3</sub>) RTP composites. Both experimental results and theoretical calculations confirmed that the formation of <sup>1</sup>(n, π*) following the introduction of nitrogen breaks the spin-forbidden restriction from <sup>1</sup>(π, π*) to <sup>3</sup>(π, π*), thereby enhancing spin–orbit coupling, which further promotes intersystem crossing and leads to the effective population of triplet excitons. The designed N-CDs@MS@Al<sub>2</sub>O<sub>3</sub> benefiting from an impressive long lifetime of 3.18 s demonstrates potential application prospects in the field of multilevel information encryption. This work provides a new concept to boost the RTP lifetime of CDs.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"261 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05187\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05187","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

室温磷光(RTP)碳点(cd)由于其优异的光学特性,在信息防伪领域具有重要的应用前景。然而,由于三重态激子跃迁的自旋禁止特性,CDs的RTP发射仍然受到很大限制。在这项工作中,采用原位氮掺杂策略设计和构建了强自旋轨道耦合氮掺杂CDs与介孔二氧化硅和氧化铝(N-CDs@MS@Al2O3) RTP复合材料。实验结果和理论计算均证实,引入氮后形成的1(n, π*)打破了1(π, π*)到3(π, π*)的自旋禁止限制,从而增强了自旋轨道耦合,进一步促进了系统间的交叉,导致了三重态激子的有效填充。所设计的N-CDs@MS@Al2O3具有令人印象深刻的3.18 s的长寿命,在多级信息加密领域具有潜在的应用前景。这项工作为提高cd的RTP寿命提供了一个新的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Breaking the Spin-Forbidden Restriction to Achieve Long Lifetime Room-Temperature Phosphorescence of Carbon Dots

Breaking the Spin-Forbidden Restriction to Achieve Long Lifetime Room-Temperature Phosphorescence of Carbon Dots
Room-temperature phosphorescent (RTP) carbon dots (CDs) demonstrate significant potential applications in the field of information anticounterfeiting due to their excellent optical properties. However, RTP emission of CDs remains significantly limited due to the spin-forbidden properties of triplet exciton transitions. In this work, an in situ nitrogen doping strategy was employed to design and construct strong spin–orbit coupling nitrogen-doped CDs with mesoporous silica with alumina (N-CDs@MS@Al2O3) RTP composites. Both experimental results and theoretical calculations confirmed that the formation of 1(n, π*) following the introduction of nitrogen breaks the spin-forbidden restriction from 1(π, π*) to 3(π, π*), thereby enhancing spin–orbit coupling, which further promotes intersystem crossing and leads to the effective population of triplet excitons. The designed N-CDs@MS@Al2O3 benefiting from an impressive long lifetime of 3.18 s demonstrates potential application prospects in the field of multilevel information encryption. This work provides a new concept to boost the RTP lifetime of CDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信