{"title":"一种具有抗菌和成骨双重特性的形状自适应水凝胶用于牙槽骨缺损修复。","authors":"Rong Tang, Xingyu Gui, Ruiying Han, Canyu Gao, Hui Zhang, Shengkai Lu, Junyu Zhao, Weikai Zhou, Axuan Chen, Huan Sun, Jianxun Sun, Yun Zhai, Zhihe Zhao and Changchun Zhou","doi":"10.1039/D4TB02242D","DOIUrl":null,"url":null,"abstract":"<p >Alveolar bone defects are often irregular in shape and can severely affect patients' physical and psychological well-being, posing significant challenges in treatment, particularly in cases complicated by systemic diseases. This study presents a shape-adaptive hydrogel with sequential antibacterial and osteogenic functions designed to repair irregular bone defects associated with osteoporosis. Naringin, an estrogen analogue, was conjugated to the hydrogel <em>via</em> disulfide bonds and then uniformly mixed with nano-hydroxyapatite (nano-HAP) to create microspheres. These microspheres were uniformly dispersed within the naringin-loaded hydrogel, forming an injectable and photocurable suspension. Upon implantation, naringin is rapidly released due to diffusion along the concentration gradient and initial hydrogel degradation, providing antibacterial effects and preventing infection. As bone repair progresses, the hydrogel undergoes further degradation and the disulfide bonds break, so that naringin is continuously released, which enhances osteoblast differentiation and inhibits osteoclast differentiation. Material characterization confirmed the presence of disulfide bonds and the sustained release profile of naringin. Both <em>in vitro</em> and <em>in vivo</em> experiments demonstrated the hydrogel's excellent biocompatibility and its effectiveness in repairing regular mandibular defects as well as irregular alveolar bone defects associated with osteoporosis. This hydrogel provides a promising strategy for the development of advanced biomaterials tailored to the complex requirements of irregular bone defect repair under osteoporotic conditions.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 5","pages":" 1712-1730"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A shape-adaptive hydrogel with dual antibacterial and osteogenic properties for alveolar bone defect repair†\",\"authors\":\"Rong Tang, Xingyu Gui, Ruiying Han, Canyu Gao, Hui Zhang, Shengkai Lu, Junyu Zhao, Weikai Zhou, Axuan Chen, Huan Sun, Jianxun Sun, Yun Zhai, Zhihe Zhao and Changchun Zhou\",\"doi\":\"10.1039/D4TB02242D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Alveolar bone defects are often irregular in shape and can severely affect patients' physical and psychological well-being, posing significant challenges in treatment, particularly in cases complicated by systemic diseases. This study presents a shape-adaptive hydrogel with sequential antibacterial and osteogenic functions designed to repair irregular bone defects associated with osteoporosis. Naringin, an estrogen analogue, was conjugated to the hydrogel <em>via</em> disulfide bonds and then uniformly mixed with nano-hydroxyapatite (nano-HAP) to create microspheres. These microspheres were uniformly dispersed within the naringin-loaded hydrogel, forming an injectable and photocurable suspension. Upon implantation, naringin is rapidly released due to diffusion along the concentration gradient and initial hydrogel degradation, providing antibacterial effects and preventing infection. As bone repair progresses, the hydrogel undergoes further degradation and the disulfide bonds break, so that naringin is continuously released, which enhances osteoblast differentiation and inhibits osteoclast differentiation. Material characterization confirmed the presence of disulfide bonds and the sustained release profile of naringin. Both <em>in vitro</em> and <em>in vivo</em> experiments demonstrated the hydrogel's excellent biocompatibility and its effectiveness in repairing regular mandibular defects as well as irregular alveolar bone defects associated with osteoporosis. This hydrogel provides a promising strategy for the development of advanced biomaterials tailored to the complex requirements of irregular bone defect repair under osteoporotic conditions.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 5\",\"pages\":\" 1712-1730\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02242d\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02242d","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A shape-adaptive hydrogel with dual antibacterial and osteogenic properties for alveolar bone defect repair†
Alveolar bone defects are often irregular in shape and can severely affect patients' physical and psychological well-being, posing significant challenges in treatment, particularly in cases complicated by systemic diseases. This study presents a shape-adaptive hydrogel with sequential antibacterial and osteogenic functions designed to repair irregular bone defects associated with osteoporosis. Naringin, an estrogen analogue, was conjugated to the hydrogel via disulfide bonds and then uniformly mixed with nano-hydroxyapatite (nano-HAP) to create microspheres. These microspheres were uniformly dispersed within the naringin-loaded hydrogel, forming an injectable and photocurable suspension. Upon implantation, naringin is rapidly released due to diffusion along the concentration gradient and initial hydrogel degradation, providing antibacterial effects and preventing infection. As bone repair progresses, the hydrogel undergoes further degradation and the disulfide bonds break, so that naringin is continuously released, which enhances osteoblast differentiation and inhibits osteoclast differentiation. Material characterization confirmed the presence of disulfide bonds and the sustained release profile of naringin. Both in vitro and in vivo experiments demonstrated the hydrogel's excellent biocompatibility and its effectiveness in repairing regular mandibular defects as well as irregular alveolar bone defects associated with osteoporosis. This hydrogel provides a promising strategy for the development of advanced biomaterials tailored to the complex requirements of irregular bone defect repair under osteoporotic conditions.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices