Ruixue Guo , Jingjing Zhang , Jiaoqin Liu , Haifa E. Alfassam , Hassan A. Rudayni , Ahmed A. Allam , Ruijuan Qu , Zongli Huo , Feng Zhu
{"title":"beaytlmethodey铵chbride (BAC-12)消毒剂在医院废水处理中的转化行为及毒性评价","authors":"Ruixue Guo , Jingjing Zhang , Jiaoqin Liu , Haifa E. Alfassam , Hassan A. Rudayni , Ahmed A. Allam , Ruijuan Qu , Zongli Huo , Feng Zhu","doi":"10.1016/j.chemosphere.2024.143981","DOIUrl":null,"url":null,"abstract":"<div><div>This work focused on the transformation behavior of the emerging beaytlmethodeyammonium chbride (BAC-12) disinfectant existed in the treatment of medical sewage during its disinfection treatment. The degradation ability of ozone (O<sub>3</sub>) to BAC-12 was the best, followed by UV/NaOCl, UV, and NaOCl. The enhancement of BAC-12 in UV/NaOCl system is caused by the combined effect of UV photolysis, reactive chlorine species (RCS), and •OH. The transformation products of BAC-12 in the disinfection treatment were detected, and the chemical structure of products was rationalized by frontier molecular orbital and transition state theory methodologies. According to the ecological structure–activity relationship (ECOSAR) assessment, the intermediates of BAC-12 in UV, NaOCl, and UV/NaOCl treatments had lower half lethal concentration (LC<sub>50</sub>) and chronic toxicity (ChV) values with a higher ecotoxicity than BAC-12. O<sub>3</sub> disinfection treatment of these toxic intermediates can significantly reduce the toxicity of the BAC-12 solution. This work provides necessary information on the potential environmental risks of BAC-12 arising from different disinfection methods in the treatment of medical wastewater.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"370 ","pages":"Article 143981"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformation behavior and toxicity assessment of beaytlmethodeyammonNium chbride (BAC-12) disinfectant during hospital wastewater treatment\",\"authors\":\"Ruixue Guo , Jingjing Zhang , Jiaoqin Liu , Haifa E. Alfassam , Hassan A. Rudayni , Ahmed A. Allam , Ruijuan Qu , Zongli Huo , Feng Zhu\",\"doi\":\"10.1016/j.chemosphere.2024.143981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work focused on the transformation behavior of the emerging beaytlmethodeyammonium chbride (BAC-12) disinfectant existed in the treatment of medical sewage during its disinfection treatment. The degradation ability of ozone (O<sub>3</sub>) to BAC-12 was the best, followed by UV/NaOCl, UV, and NaOCl. The enhancement of BAC-12 in UV/NaOCl system is caused by the combined effect of UV photolysis, reactive chlorine species (RCS), and •OH. The transformation products of BAC-12 in the disinfection treatment were detected, and the chemical structure of products was rationalized by frontier molecular orbital and transition state theory methodologies. According to the ecological structure–activity relationship (ECOSAR) assessment, the intermediates of BAC-12 in UV, NaOCl, and UV/NaOCl treatments had lower half lethal concentration (LC<sub>50</sub>) and chronic toxicity (ChV) values with a higher ecotoxicity than BAC-12. O<sub>3</sub> disinfection treatment of these toxic intermediates can significantly reduce the toxicity of the BAC-12 solution. This work provides necessary information on the potential environmental risks of BAC-12 arising from different disinfection methods in the treatment of medical wastewater.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"370 \",\"pages\":\"Article 143981\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524028893\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524028893","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Transformation behavior and toxicity assessment of beaytlmethodeyammonNium chbride (BAC-12) disinfectant during hospital wastewater treatment
This work focused on the transformation behavior of the emerging beaytlmethodeyammonium chbride (BAC-12) disinfectant existed in the treatment of medical sewage during its disinfection treatment. The degradation ability of ozone (O3) to BAC-12 was the best, followed by UV/NaOCl, UV, and NaOCl. The enhancement of BAC-12 in UV/NaOCl system is caused by the combined effect of UV photolysis, reactive chlorine species (RCS), and •OH. The transformation products of BAC-12 in the disinfection treatment were detected, and the chemical structure of products was rationalized by frontier molecular orbital and transition state theory methodologies. According to the ecological structure–activity relationship (ECOSAR) assessment, the intermediates of BAC-12 in UV, NaOCl, and UV/NaOCl treatments had lower half lethal concentration (LC50) and chronic toxicity (ChV) values with a higher ecotoxicity than BAC-12. O3 disinfection treatment of these toxic intermediates can significantly reduce the toxicity of the BAC-12 solution. This work provides necessary information on the potential environmental risks of BAC-12 arising from different disinfection methods in the treatment of medical wastewater.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.