Salma Yehia, Jimin Wang, Gary W Brudvig, M R Gunner, Bernard R Brooks, Muhamed Amin
{"title":"用连续飞秒晶体学分析光系统II的S1和S3态析氧配合物的结构变化。","authors":"Salma Yehia, Jimin Wang, Gary W Brudvig, M R Gunner, Bernard R Brooks, Muhamed Amin","doi":"10.1016/j.bbabio.2024.149531","DOIUrl":null,"url":null,"abstract":"<p><p>Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The Mn<sub>4</sub>O<sub>5</sub>Ca cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O<sub>2</sub> and releasing protons to the lumen and electrons to drive PSII reactions. The Mn coordination and OEC electronic structure changes through these intermediates. Thus, obtaining a high-resolution structure of each catalytic intermediate would help reveal the reaction mechanism. While valuable structural information was obtained from conventional X-ray crystallography, time-resolution of conventional X-ray crystallography limits the analysis of shorted-lived reaction intermediates. Serial Femtosecond X-ray crystallography (SFX), which overcomes the radiation damage by using ultra short laser pulse for imaging, has been used extensively to study the water splitting intermediates in PSII. Here, we review the state of the art and our understanding of the water splitting reaction before and after the advent of SFX. Furthermore, we analyze the likely Mn coordination in multiple XFEL structures prepared in the dark-adapted S<sub>1</sub> state and those following two-flashes which are poised in the penultimate S<sub>3</sub> oxidation state based on Mn coordination chemistry. Finally, we summarize the major contributions of the SFX to our understanding of the structures of the S<sub>1</sub> and S<sub>3</sub> states.</p>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":" ","pages":"149531"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of the structural changes of the oxygen evolving complex of Photosystem II in the S<sub>1</sub> and S<sub>3</sub> states revealed by serial femtosecond crystallography.\",\"authors\":\"Salma Yehia, Jimin Wang, Gary W Brudvig, M R Gunner, Bernard R Brooks, Muhamed Amin\",\"doi\":\"10.1016/j.bbabio.2024.149531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The Mn<sub>4</sub>O<sub>5</sub>Ca cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O<sub>2</sub> and releasing protons to the lumen and electrons to drive PSII reactions. The Mn coordination and OEC electronic structure changes through these intermediates. Thus, obtaining a high-resolution structure of each catalytic intermediate would help reveal the reaction mechanism. While valuable structural information was obtained from conventional X-ray crystallography, time-resolution of conventional X-ray crystallography limits the analysis of shorted-lived reaction intermediates. Serial Femtosecond X-ray crystallography (SFX), which overcomes the radiation damage by using ultra short laser pulse for imaging, has been used extensively to study the water splitting intermediates in PSII. Here, we review the state of the art and our understanding of the water splitting reaction before and after the advent of SFX. Furthermore, we analyze the likely Mn coordination in multiple XFEL structures prepared in the dark-adapted S<sub>1</sub> state and those following two-flashes which are poised in the penultimate S<sub>3</sub> oxidation state based on Mn coordination chemistry. Finally, we summarize the major contributions of the SFX to our understanding of the structures of the S<sub>1</sub> and S<sub>3</sub> states.</p>\",\"PeriodicalId\":50731,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"volume\":\" \",\"pages\":\"149531\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbabio.2024.149531\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbabio.2024.149531","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An analysis of the structural changes of the oxygen evolving complex of Photosystem II in the S1 and S3 states revealed by serial femtosecond crystallography.
Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The Mn4O5Ca cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O2 and releasing protons to the lumen and electrons to drive PSII reactions. The Mn coordination and OEC electronic structure changes through these intermediates. Thus, obtaining a high-resolution structure of each catalytic intermediate would help reveal the reaction mechanism. While valuable structural information was obtained from conventional X-ray crystallography, time-resolution of conventional X-ray crystallography limits the analysis of shorted-lived reaction intermediates. Serial Femtosecond X-ray crystallography (SFX), which overcomes the radiation damage by using ultra short laser pulse for imaging, has been used extensively to study the water splitting intermediates in PSII. Here, we review the state of the art and our understanding of the water splitting reaction before and after the advent of SFX. Furthermore, we analyze the likely Mn coordination in multiple XFEL structures prepared in the dark-adapted S1 state and those following two-flashes which are poised in the penultimate S3 oxidation state based on Mn coordination chemistry. Finally, we summarize the major contributions of the SFX to our understanding of the structures of the S1 and S3 states.
期刊介绍:
BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.