{"title":"捕食者-猎物相互作用模型中恐惧和Allee效应对其生长的综合影响。","authors":"Kawkab Al Amri, Qamar J A Khan, David Greenhalgh","doi":"10.3934/mbe.2024319","DOIUrl":null,"url":null,"abstract":"<p><p>We considered predator-prey models which incorporated both an Allee effect and a new fear factor effect together, and where the predator predated the prey with a Holling type I functional response. We started off with a two-dimensional model where we found possible equilibria and examined their stabilities. By using the predator mortality rate as the bifurcation parameter, the model exhibited Hopf-bifurcation for the coexistence equilibrium. Furthermore, our numerical illustrations demonstrated the effect of fear and the Allee effect on the population densities, and we found that the level of fear had little impact on the long-term prey population level. The population of predators, however, declined as the fear intensity rose, indicating that the fear effect might result in a decline in the predator population. The dynamics of the delayed system were examined and Hopf-bifurcation was discussed. Finally, we looked at an eco-epidemiological model that took into account the same cost of fear and the Allee effect. In this model, the prey was afflicted with a disease. The prey was either susceptible or infected. Numerical simulations were carried out to show that as the Allee threshold rose, the uninfected prey and predator decreased, while the population of infected prey increased. When the Allee threshold hit a certain value, all populations became extinct. As fear intensity increased, the population of uninfected prey decreased, and beyond a certain level of fear, habituation prevented the uninfected prey from changing. After a certain level of fear, the predator population went extinct and, as a result, the only interaction left was between uninfected and infected prey which increased disease transmission, and so the infected prey increased. Hopf-bifurcation was studied by taking the time delay as the bifurcation parameter. We estimated the delay length to preserve stability.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 10","pages":"7211-7252"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined impact of fear and Allee effect in predator-prey interaction models on their growth.\",\"authors\":\"Kawkab Al Amri, Qamar J A Khan, David Greenhalgh\",\"doi\":\"10.3934/mbe.2024319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We considered predator-prey models which incorporated both an Allee effect and a new fear factor effect together, and where the predator predated the prey with a Holling type I functional response. We started off with a two-dimensional model where we found possible equilibria and examined their stabilities. By using the predator mortality rate as the bifurcation parameter, the model exhibited Hopf-bifurcation for the coexistence equilibrium. Furthermore, our numerical illustrations demonstrated the effect of fear and the Allee effect on the population densities, and we found that the level of fear had little impact on the long-term prey population level. The population of predators, however, declined as the fear intensity rose, indicating that the fear effect might result in a decline in the predator population. The dynamics of the delayed system were examined and Hopf-bifurcation was discussed. Finally, we looked at an eco-epidemiological model that took into account the same cost of fear and the Allee effect. In this model, the prey was afflicted with a disease. The prey was either susceptible or infected. Numerical simulations were carried out to show that as the Allee threshold rose, the uninfected prey and predator decreased, while the population of infected prey increased. When the Allee threshold hit a certain value, all populations became extinct. As fear intensity increased, the population of uninfected prey decreased, and beyond a certain level of fear, habituation prevented the uninfected prey from changing. After a certain level of fear, the predator population went extinct and, as a result, the only interaction left was between uninfected and infected prey which increased disease transmission, and so the infected prey increased. Hopf-bifurcation was studied by taking the time delay as the bifurcation parameter. We estimated the delay length to preserve stability.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 10\",\"pages\":\"7211-7252\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024319\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024319","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Combined impact of fear and Allee effect in predator-prey interaction models on their growth.
We considered predator-prey models which incorporated both an Allee effect and a new fear factor effect together, and where the predator predated the prey with a Holling type I functional response. We started off with a two-dimensional model where we found possible equilibria and examined their stabilities. By using the predator mortality rate as the bifurcation parameter, the model exhibited Hopf-bifurcation for the coexistence equilibrium. Furthermore, our numerical illustrations demonstrated the effect of fear and the Allee effect on the population densities, and we found that the level of fear had little impact on the long-term prey population level. The population of predators, however, declined as the fear intensity rose, indicating that the fear effect might result in a decline in the predator population. The dynamics of the delayed system were examined and Hopf-bifurcation was discussed. Finally, we looked at an eco-epidemiological model that took into account the same cost of fear and the Allee effect. In this model, the prey was afflicted with a disease. The prey was either susceptible or infected. Numerical simulations were carried out to show that as the Allee threshold rose, the uninfected prey and predator decreased, while the population of infected prey increased. When the Allee threshold hit a certain value, all populations became extinct. As fear intensity increased, the population of uninfected prey decreased, and beyond a certain level of fear, habituation prevented the uninfected prey from changing. After a certain level of fear, the predator population went extinct and, as a result, the only interaction left was between uninfected and infected prey which increased disease transmission, and so the infected prey increased. Hopf-bifurcation was studied by taking the time delay as the bifurcation parameter. We estimated the delay length to preserve stability.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).