Madleen Grohganz, Zerina Johanson, Joseph N Keating, Philip C J Donoghue
{"title":"翼类异straans口板的形态发生与牙齿的进化起源。","authors":"Madleen Grohganz, Zerina Johanson, Joseph N Keating, Philip C J Donoghue","doi":"10.1098/rsos.240836","DOIUrl":null,"url":null,"abstract":"<p><p>Teeth are a key vertebrate innovation; their evolution is generally associated with the origin of jawed vertebrates. However, tooth-like structures already occur in jawless stem-gnathostomes; heterostracans bear denticles and morphologically distinct tubercles on their oral plates. We analysed the histology of the heterostracan denticles and plates to elucidate their morphogenesis and test their homology to the gnathostome oral skeleton. We identified a general model of growth for heterostracan oral plates that exhibit proximal episodic addition of tubercle rows. The distal hook exhibits truncated lamellae compatible with resorption, but we observe growth layers to be continuous between denticles. The denticles show no evidence of patterns of apposition or replacement indicating tooth homology. The oral plates and dermal skeleton share the same histological layers. The denticles grew in a manner comparable to the oral plate tubercles and the rest of the dermal skeleton. Our test of phylogenetic congruence reveals that the distribution of internal odontodes is discontinuous, indicating that the capacity to form internal odontodes evolved independently several times among stem-gnathostomes. Our results support the 'outside-in' hypothesis and the origin of teeth through the spread of odontogenic competence from extra-oral to oral epithelia and the subsequent co-option to a tooth function in gnathostomes.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 12","pages":"240836"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651891/pdf/","citationCount":"0","resultStr":"{\"title\":\"Morphogenesis of pteraspid heterostracan oral plates and the evolutionary origin of teeth.\",\"authors\":\"Madleen Grohganz, Zerina Johanson, Joseph N Keating, Philip C J Donoghue\",\"doi\":\"10.1098/rsos.240836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Teeth are a key vertebrate innovation; their evolution is generally associated with the origin of jawed vertebrates. However, tooth-like structures already occur in jawless stem-gnathostomes; heterostracans bear denticles and morphologically distinct tubercles on their oral plates. We analysed the histology of the heterostracan denticles and plates to elucidate their morphogenesis and test their homology to the gnathostome oral skeleton. We identified a general model of growth for heterostracan oral plates that exhibit proximal episodic addition of tubercle rows. The distal hook exhibits truncated lamellae compatible with resorption, but we observe growth layers to be continuous between denticles. The denticles show no evidence of patterns of apposition or replacement indicating tooth homology. The oral plates and dermal skeleton share the same histological layers. The denticles grew in a manner comparable to the oral plate tubercles and the rest of the dermal skeleton. Our test of phylogenetic congruence reveals that the distribution of internal odontodes is discontinuous, indicating that the capacity to form internal odontodes evolved independently several times among stem-gnathostomes. Our results support the 'outside-in' hypothesis and the origin of teeth through the spread of odontogenic competence from extra-oral to oral epithelia and the subsequent co-option to a tooth function in gnathostomes.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"11 12\",\"pages\":\"240836\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651891/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.240836\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240836","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Morphogenesis of pteraspid heterostracan oral plates and the evolutionary origin of teeth.
Teeth are a key vertebrate innovation; their evolution is generally associated with the origin of jawed vertebrates. However, tooth-like structures already occur in jawless stem-gnathostomes; heterostracans bear denticles and morphologically distinct tubercles on their oral plates. We analysed the histology of the heterostracan denticles and plates to elucidate their morphogenesis and test their homology to the gnathostome oral skeleton. We identified a general model of growth for heterostracan oral plates that exhibit proximal episodic addition of tubercle rows. The distal hook exhibits truncated lamellae compatible with resorption, but we observe growth layers to be continuous between denticles. The denticles show no evidence of patterns of apposition or replacement indicating tooth homology. The oral plates and dermal skeleton share the same histological layers. The denticles grew in a manner comparable to the oral plate tubercles and the rest of the dermal skeleton. Our test of phylogenetic congruence reveals that the distribution of internal odontodes is discontinuous, indicating that the capacity to form internal odontodes evolved independently several times among stem-gnathostomes. Our results support the 'outside-in' hypothesis and the origin of teeth through the spread of odontogenic competence from extra-oral to oral epithelia and the subsequent co-option to a tooth function in gnathostomes.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.