转录组学和蛋白质组学测序揭示了维生素D和代谢通量变化在人类肝类器官诱导中的作用。

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Shule Zhang, Linghong Liu, Xianyu Li, Tiancheng Zhou, Qing Shi, Dong Li, Xiuli Ju
{"title":"转录组学和蛋白质组学测序揭示了维生素D和代谢通量变化在人类肝类器官诱导中的作用。","authors":"Shule Zhang, Linghong Liu, Xianyu Li, Tiancheng Zhou, Qing Shi, Dong Li, Xiuli Ju","doi":"10.1186/s13287-024-04101-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatic organoids (HOs), validated through comparative sequencing with human liver tissues, are reliable models for liver research. Comprehensive transcriptomic and proteomic sequencing of HOs throughout their induction period will enhance the platform's utility, aiding in the elucidation of liver development's molecular mechanisms.</p><p><strong>Methods: </strong>We developed hepatic organoids (HOs) from embryonic stem cells (ESCs) through a de novo induction protocol, mimicking the stages of fetal liver development: ESCs to definitive endoderm (DE), then to foregut (FG), hepatoblasts (HB), and finally to HOs stage 1 (HO1), culminating in self-organizing HOs stage 2 (HO2) via dissociation and re-inoculation. The successful establishment of HOs was validated by immunofluorescence staining and RT-qPCR for specific markers. Comprehensive transcriptomic and proteomic sequencing and analysis were conducted on FG, HB, HO1, and HO2.</p><p><strong>Results: </strong>Our data suggest that several transcription factors (TFs) activated during the HB stage share overlapping target genes with the vitamin D receptor (VDR). Calcitriol, a direct activator of VDR, notably facilitated the FG to HB stage transition by activating VDR and enhancing key TFs, thereby promoting hepatic progenitor cell maturation. Furthermore, our findings revealed a significant transition towards glycolytic energy metabolism at the HO2 stage, characterized by increased glycolytic flux and reduced oxidative phosphorylation. Inhibition of glycolysis using 2-deoxy-D-glucose (2-DG) led to suppressed growth and differentiation at the HO2 stage. Analysis of signaling pathways indicated upregulation of the HIF-1 pathway, which is associated with glycolysis activation, as well as the MAPK and PI3K-AKT pathways, which regulate HIF-1α protein translation.</p><p><strong>Conclusions: </strong>We elucidated a pivotal role for calcitriol in facilitating the transition from FG to HB by activating VDR and augmenting the expression of critical transcription factors (TFs). Besides, our research underscores a shift in metabolic pathways toward glycolytic energy metabolism in HO2 organoids. Overall, our multiomics approach reveals the intricate molecular regulation during the development of HOs.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"478"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic and proteomic sequencing unveils the role of vitamin D and metabolic flux shifts in the induction of human hepatic organoids.\",\"authors\":\"Shule Zhang, Linghong Liu, Xianyu Li, Tiancheng Zhou, Qing Shi, Dong Li, Xiuli Ju\",\"doi\":\"10.1186/s13287-024-04101-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hepatic organoids (HOs), validated through comparative sequencing with human liver tissues, are reliable models for liver research. Comprehensive transcriptomic and proteomic sequencing of HOs throughout their induction period will enhance the platform's utility, aiding in the elucidation of liver development's molecular mechanisms.</p><p><strong>Methods: </strong>We developed hepatic organoids (HOs) from embryonic stem cells (ESCs) through a de novo induction protocol, mimicking the stages of fetal liver development: ESCs to definitive endoderm (DE), then to foregut (FG), hepatoblasts (HB), and finally to HOs stage 1 (HO1), culminating in self-organizing HOs stage 2 (HO2) via dissociation and re-inoculation. The successful establishment of HOs was validated by immunofluorescence staining and RT-qPCR for specific markers. Comprehensive transcriptomic and proteomic sequencing and analysis were conducted on FG, HB, HO1, and HO2.</p><p><strong>Results: </strong>Our data suggest that several transcription factors (TFs) activated during the HB stage share overlapping target genes with the vitamin D receptor (VDR). Calcitriol, a direct activator of VDR, notably facilitated the FG to HB stage transition by activating VDR and enhancing key TFs, thereby promoting hepatic progenitor cell maturation. Furthermore, our findings revealed a significant transition towards glycolytic energy metabolism at the HO2 stage, characterized by increased glycolytic flux and reduced oxidative phosphorylation. Inhibition of glycolysis using 2-deoxy-D-glucose (2-DG) led to suppressed growth and differentiation at the HO2 stage. Analysis of signaling pathways indicated upregulation of the HIF-1 pathway, which is associated with glycolysis activation, as well as the MAPK and PI3K-AKT pathways, which regulate HIF-1α protein translation.</p><p><strong>Conclusions: </strong>We elucidated a pivotal role for calcitriol in facilitating the transition from FG to HB by activating VDR and augmenting the expression of critical transcription factors (TFs). Besides, our research underscores a shift in metabolic pathways toward glycolytic energy metabolism in HO2 organoids. Overall, our multiomics approach reveals the intricate molecular regulation during the development of HOs.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":\"15 1\",\"pages\":\"478\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-024-04101-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04101-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景:肝类器官(HOs)通过与人类肝脏组织的比较测序验证,是肝脏研究的可靠模型。在诱导期对HOs进行全面的转录组学和蛋白质组学测序将增强该平台的实用性,有助于阐明肝脏发育的分子机制。方法:我们通过从头诱导的方法,从胚胎干细胞(ESCs)培养肝类器官(HOs),模拟胎儿肝脏发育的阶段:ESCs到最终内胚层(de),然后到前肠(FG)、肝母细胞(HB),最后到HOs 1期(HO1),最终通过分离和再接种自组织HOs 2期(HO2)。通过免疫荧光染色和RT-qPCR检测特异性标记物,验证了HOs的成功建立。对FG、HB、HO1和HO2进行了全面的转录组学和蛋白质组学测序和分析。结果:我们的数据表明,在HB阶段激活的几种转录因子(TFs)与维生素D受体(VDR)共享重叠的靶基因。骨化三醇是VDR的直接激活剂,通过激活VDR和增强关键tf,促进肝祖细胞成熟,显著促进FG向HB阶段转变。此外,我们的研究结果揭示了HO2阶段糖酵解能量代谢的显著转变,其特征是糖酵解通量增加和氧化磷酸化减少。使用2-脱氧-d -葡萄糖(2-DG)抑制糖酵解导致HO2阶段的生长和分化受到抑制。信号通路分析表明,与糖酵解激活相关的HIF-1通路以及调节HIF-1α蛋白翻译的MAPK和PI3K-AKT通路上调。结论:我们阐明了骨化三醇通过激活VDR和增加关键转录因子(TFs)的表达,在促进从FG到HB的转变中起关键作用。此外,我们的研究强调了HO2类器官代谢途径向糖酵解能量代谢的转变。总之,我们的多组学方法揭示了HOs发育过程中复杂的分子调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptomic and proteomic sequencing unveils the role of vitamin D and metabolic flux shifts in the induction of human hepatic organoids.

Background: Hepatic organoids (HOs), validated through comparative sequencing with human liver tissues, are reliable models for liver research. Comprehensive transcriptomic and proteomic sequencing of HOs throughout their induction period will enhance the platform's utility, aiding in the elucidation of liver development's molecular mechanisms.

Methods: We developed hepatic organoids (HOs) from embryonic stem cells (ESCs) through a de novo induction protocol, mimicking the stages of fetal liver development: ESCs to definitive endoderm (DE), then to foregut (FG), hepatoblasts (HB), and finally to HOs stage 1 (HO1), culminating in self-organizing HOs stage 2 (HO2) via dissociation and re-inoculation. The successful establishment of HOs was validated by immunofluorescence staining and RT-qPCR for specific markers. Comprehensive transcriptomic and proteomic sequencing and analysis were conducted on FG, HB, HO1, and HO2.

Results: Our data suggest that several transcription factors (TFs) activated during the HB stage share overlapping target genes with the vitamin D receptor (VDR). Calcitriol, a direct activator of VDR, notably facilitated the FG to HB stage transition by activating VDR and enhancing key TFs, thereby promoting hepatic progenitor cell maturation. Furthermore, our findings revealed a significant transition towards glycolytic energy metabolism at the HO2 stage, characterized by increased glycolytic flux and reduced oxidative phosphorylation. Inhibition of glycolysis using 2-deoxy-D-glucose (2-DG) led to suppressed growth and differentiation at the HO2 stage. Analysis of signaling pathways indicated upregulation of the HIF-1 pathway, which is associated with glycolysis activation, as well as the MAPK and PI3K-AKT pathways, which regulate HIF-1α protein translation.

Conclusions: We elucidated a pivotal role for calcitriol in facilitating the transition from FG to HB by activating VDR and augmenting the expression of critical transcription factors (TFs). Besides, our research underscores a shift in metabolic pathways toward glycolytic energy metabolism in HO2 organoids. Overall, our multiomics approach reveals the intricate molecular regulation during the development of HOs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信