Eerik-Mikael Piirtola, David P Overy, C Peter Constabel
{"title":"杨树叶芽树脂代谢组学:杨树叶芽化学的季节性分析为树脂生物合成提供了见解。","authors":"Eerik-Mikael Piirtola, David P Overy, C Peter Constabel","doi":"10.1093/pcp/pcae149","DOIUrl":null,"url":null,"abstract":"<p><p>Trees in the genus Populus synthesize sticky and fragrant resins to protect dormant leaf buds during winter. These resins contain diverse phenolic metabolites, in particular hydroxycinnamate esters and methylated flavonoids. P. trichocarpa leaf bud resin is characterized by methylated dihydrochalcone aglycones. To determine how the resin profile is influenced by seasonal changes, P. trichocarpa lateral leaf bud extracts and secreted surface resin were collected monthly over a one-year cycle. The dihydrochalcones in both sets of extracts were quantified using ultrahigh pressure liquid chromatography - mass spectrometry (UPLC-MS) and other chemical changes monitored using non-targeted metabolomics by ultrahigh pressure liquid chromatography - high resolution mass spectrometry (UPLC-HRMS). The results indicate that the dihydrochalcone content changes over the seasons and that biosynthesis occurs concomitant with bud development in the summer months. Non-targeted metabolomics data confirmed a pattern of dramatic changes in the summer, and further suggested additional periods of substantive biochemical change in the resin. While overall patterns of surface-extracted resin matched that of whole bud extracts, some of the dynamics were shifted in the surface resin samples. This study provides the basis for the use of dihydrochalcones and other identified resin components as metabolic markers for more detailed investigations of resin biosynthesis, secretion and movement to the bud surface.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poplar Leaf Bud Resin Metabolomics: Seasonal Profiling of Leaf Bud Chemistry in Populus trichocarpa Provides Insight Into Resin Biosynthesis.\",\"authors\":\"Eerik-Mikael Piirtola, David P Overy, C Peter Constabel\",\"doi\":\"10.1093/pcp/pcae149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trees in the genus Populus synthesize sticky and fragrant resins to protect dormant leaf buds during winter. These resins contain diverse phenolic metabolites, in particular hydroxycinnamate esters and methylated flavonoids. P. trichocarpa leaf bud resin is characterized by methylated dihydrochalcone aglycones. To determine how the resin profile is influenced by seasonal changes, P. trichocarpa lateral leaf bud extracts and secreted surface resin were collected monthly over a one-year cycle. The dihydrochalcones in both sets of extracts were quantified using ultrahigh pressure liquid chromatography - mass spectrometry (UPLC-MS) and other chemical changes monitored using non-targeted metabolomics by ultrahigh pressure liquid chromatography - high resolution mass spectrometry (UPLC-HRMS). The results indicate that the dihydrochalcone content changes over the seasons and that biosynthesis occurs concomitant with bud development in the summer months. Non-targeted metabolomics data confirmed a pattern of dramatic changes in the summer, and further suggested additional periods of substantive biochemical change in the resin. While overall patterns of surface-extracted resin matched that of whole bud extracts, some of the dynamics were shifted in the surface resin samples. This study provides the basis for the use of dihydrochalcones and other identified resin components as metabolic markers for more detailed investigations of resin biosynthesis, secretion and movement to the bud surface.</p>\",\"PeriodicalId\":20575,\"journal\":{\"name\":\"Plant and Cell Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcae149\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Poplar Leaf Bud Resin Metabolomics: Seasonal Profiling of Leaf Bud Chemistry in Populus trichocarpa Provides Insight Into Resin Biosynthesis.
Trees in the genus Populus synthesize sticky and fragrant resins to protect dormant leaf buds during winter. These resins contain diverse phenolic metabolites, in particular hydroxycinnamate esters and methylated flavonoids. P. trichocarpa leaf bud resin is characterized by methylated dihydrochalcone aglycones. To determine how the resin profile is influenced by seasonal changes, P. trichocarpa lateral leaf bud extracts and secreted surface resin were collected monthly over a one-year cycle. The dihydrochalcones in both sets of extracts were quantified using ultrahigh pressure liquid chromatography - mass spectrometry (UPLC-MS) and other chemical changes monitored using non-targeted metabolomics by ultrahigh pressure liquid chromatography - high resolution mass spectrometry (UPLC-HRMS). The results indicate that the dihydrochalcone content changes over the seasons and that biosynthesis occurs concomitant with bud development in the summer months. Non-targeted metabolomics data confirmed a pattern of dramatic changes in the summer, and further suggested additional periods of substantive biochemical change in the resin. While overall patterns of surface-extracted resin matched that of whole bud extracts, some of the dynamics were shifted in the surface resin samples. This study provides the basis for the use of dihydrochalcones and other identified resin components as metabolic markers for more detailed investigations of resin biosynthesis, secretion and movement to the bud surface.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.