{"title":"调节甘蔗分蘖性状的独角麦内酯途径基因的鉴定与功能分析。","authors":"Yiying Qi, Xiaoxi Feng, Hongyan Ding, Dadong Lin, Yuhong Lan, Yixing Zhang, Sehrish Akbar, Huihong Shi, Zhen Li, Ruiting Gao, Xiuting Hua, Yuhao Wang, Jisen Zhang","doi":"10.1093/pcp/pcae146","DOIUrl":null,"url":null,"abstract":"<p><p>Saccharum officinarum (S. officinarum) and Saccharum spontaneum (S. spontaneum) are two fundamental species of modern sugarcane cultivars, exhibiting divergent tillering patterns crucial for sugarcane architecture and yield. Strigolactones (SLs), a class of plant hormones, are considered to play a central role in shaping plant form and regulating tillering. Our study highlights the distinct tillering patterns observed between S. officinarum and S. spontaneum, and implicates significant differences in SL levels in root exudates between the two species. Treatment with rac-GR24 (an artificial strigolactone analog) suppressed tillering in S. spontaneum. Based on transcriptome analysis, we focused on two genes, TRANSCRIPTION ELONGATION FACTOR 1 (TEF1) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which show higher expression in S. spontaneum or S. officinarum, respectively. While the overexpression of SoCCA1 did not lead to significant phenotypic differences, overexpression of SsTEF1 in rice stimulated tillering and inhibited plant height, demonstrating its role in tillering regulation. However, the overexpression of suggesting that SoCCA1 may not be the key regulator of sugarcane tillering. Yeast one-hybrid (Y1H) assays identified four transcription factors (TFs) regulating SsTEF1, four and five TFs regulating SsCCA1 and SoCCA1. This study provides a theoretical foundation for deciphering the molecular mechanisms underlying the different tillering behaviors between S. officinarum and S. spontaneum, providing valuable insights for the molecular-based design of sugarcane breeding strategies.</p>","PeriodicalId":20575,"journal":{"name":"Plant and Cell Physiology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Functional Analysis of Strigolactone Pathway Genes Regulating Tillering Traits in Sugarcane.\",\"authors\":\"Yiying Qi, Xiaoxi Feng, Hongyan Ding, Dadong Lin, Yuhong Lan, Yixing Zhang, Sehrish Akbar, Huihong Shi, Zhen Li, Ruiting Gao, Xiuting Hua, Yuhao Wang, Jisen Zhang\",\"doi\":\"10.1093/pcp/pcae146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Saccharum officinarum (S. officinarum) and Saccharum spontaneum (S. spontaneum) are two fundamental species of modern sugarcane cultivars, exhibiting divergent tillering patterns crucial for sugarcane architecture and yield. Strigolactones (SLs), a class of plant hormones, are considered to play a central role in shaping plant form and regulating tillering. Our study highlights the distinct tillering patterns observed between S. officinarum and S. spontaneum, and implicates significant differences in SL levels in root exudates between the two species. Treatment with rac-GR24 (an artificial strigolactone analog) suppressed tillering in S. spontaneum. Based on transcriptome analysis, we focused on two genes, TRANSCRIPTION ELONGATION FACTOR 1 (TEF1) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which show higher expression in S. spontaneum or S. officinarum, respectively. While the overexpression of SoCCA1 did not lead to significant phenotypic differences, overexpression of SsTEF1 in rice stimulated tillering and inhibited plant height, demonstrating its role in tillering regulation. However, the overexpression of suggesting that SoCCA1 may not be the key regulator of sugarcane tillering. Yeast one-hybrid (Y1H) assays identified four transcription factors (TFs) regulating SsTEF1, four and five TFs regulating SsCCA1 and SoCCA1. This study provides a theoretical foundation for deciphering the molecular mechanisms underlying the different tillering behaviors between S. officinarum and S. spontaneum, providing valuable insights for the molecular-based design of sugarcane breeding strategies.</p>\",\"PeriodicalId\":20575,\"journal\":{\"name\":\"Plant and Cell Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Cell Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/pcp/pcae146\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Cell Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/pcp/pcae146","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Identification and Functional Analysis of Strigolactone Pathway Genes Regulating Tillering Traits in Sugarcane.
Saccharum officinarum (S. officinarum) and Saccharum spontaneum (S. spontaneum) are two fundamental species of modern sugarcane cultivars, exhibiting divergent tillering patterns crucial for sugarcane architecture and yield. Strigolactones (SLs), a class of plant hormones, are considered to play a central role in shaping plant form and regulating tillering. Our study highlights the distinct tillering patterns observed between S. officinarum and S. spontaneum, and implicates significant differences in SL levels in root exudates between the two species. Treatment with rac-GR24 (an artificial strigolactone analog) suppressed tillering in S. spontaneum. Based on transcriptome analysis, we focused on two genes, TRANSCRIPTION ELONGATION FACTOR 1 (TEF1) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which show higher expression in S. spontaneum or S. officinarum, respectively. While the overexpression of SoCCA1 did not lead to significant phenotypic differences, overexpression of SsTEF1 in rice stimulated tillering and inhibited plant height, demonstrating its role in tillering regulation. However, the overexpression of suggesting that SoCCA1 may not be the key regulator of sugarcane tillering. Yeast one-hybrid (Y1H) assays identified four transcription factors (TFs) regulating SsTEF1, four and five TFs regulating SsCCA1 and SoCCA1. This study provides a theoretical foundation for deciphering the molecular mechanisms underlying the different tillering behaviors between S. officinarum and S. spontaneum, providing valuable insights for the molecular-based design of sugarcane breeding strategies.
期刊介绍:
Plant & Cell Physiology (PCP) was established in 1959 and is the official journal of the Japanese Society of Plant Physiologists (JSPP). The title reflects the journal''s original interest and scope to encompass research not just at the whole-organism level but also at the cellular and subcellular levels.
Amongst the broad range of topics covered by this international journal, readers will find the very best original research on plant physiology, biochemistry, cell biology, molecular genetics, epigenetics, biotechnology, bioinformatics and –omics; as well as how plants respond to and interact with their environment (abiotic and biotic factors), and the biology of photosynthetic microorganisms.